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Abstract

Kernels are functions designed in order to capture resemblance between data and they
are used in a wide range of machine learning techniques including support vector networks
(SVMs). In their standard version, commonly used kernels such as the Gaussian, show rea-
sonably good performance in many classification and recognition tasks in computer vision,
bio-informatics and text processing. In the particular task of object recognition, the main
deficiency of standard kernels, such as the convolution one, resides in the lack in capturing
the right geometric structure of objects while also being invariant.

This paper introduces a novel framework for designing a new class of kernels, referred
to as Context-Dependent (CDK), with the particularity of (i) incorporating the geometric
structure and the spatial relationships between image primitives (such as interest points,
regions, etc.) while (ii) handling invariance and satisfying the positive definiteness which
is necessary in all kernel methods including SVMs. Beside these properties, the out-
performance of CDKs with respect to standard context-free kernels, is shown for pattern
classification problems on standard databases.

Résumé

Les noyaux sont des fonctions qui modélisent la ressemblance entre les données et sont
utilisés dans plusieurs techniques d’apprentissage telles que les machines à vecteurs de sup-
ports (SVMs). Dans leur version standard, les noyaux les plus utilisés fournissent de bonnes
performances dans plusieurs taches en classification et reconnaissance, en vision par ordi-
nateurs, en bio-informatique, etc. En reconnaissance d’objet, en particulier, les noyaux
classiques ne caractérisent pas suffisamment bien les structures géométriques des objets et
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manquent aussi d’invariance.

Dans ce rapport, on introduit une nouvelle classe de noyaux dite dépendente du contexte
(notée “CDK”) avec la particularité (i) d’inclure la structure géométrique et les relations
spatiales entre les primitives des images (points d’intérêts, régions, etc.) (ii) d’être invariante
aux transformations géometriques et (iii) de satisfaire la condition de Mercer. Outre les
propriétés théoriques du noyau “CDK”, ses performances sont meilleures par rapport aux
noyaux classiques et “indépendants du contexte”.

Keywords: Kernel Design, Statistical Machine Learning, Support Vector Machines,
Graph Matching, Context-Free Kernels, Context-Dependent Kernels, Object Recognition.

1. Introduction

Kernel methods including support vector machines (SVMs), initially introduced in Boser
et al. (1992), show a particular interest as they are performant and theoretically well
grounded (Bishop, 2007). These methods rely on the hypothesis of the existence of (explicit
or implicit) mapping functions which transfer training and test data, via kernels, from input
spaces into high dimensional Hilbert spaces, also referred to as feature spaces (Shawe-Taylor
and Cristianini, 2000). Kernels are symmetric, continuous, bi-variate similarity functions
which take high values when input data share similar structures, appearance, behaviors,...,
and should be as invariant as possible to the linear and non linear transformations. For
instance, in object recognition, a kernel should take a high value only when two objects
(such as faces) belong to the same class or have the same identity, expression, etc. and
regardless their pose. A wide range of vision applications were solved using kernel methods
including optical character recognition (Miyao et al., 2005), pose estimation (Ng and Gong,
1999), image retrieval (Tong and Chang, 2001) and the most studied object recognition
problem (Lyu, 2005; Barla et al., 2002; Grauman and Darrell, 2007). In almost all the
proposed solutions, authors use and combine, via algebraic operations, standard kernels
such as the linear, the polynomial and the Gaussian (Genton, 2001). These kernels are also
referred to as holistic as they operate on fixed length and ordered data (Swain and Ballard,
1991; Chapelle et al., 1999) and even though proved to be relatively performant, they con-
tain no a priori knowledge about the task at hand and the expected properties of invariance.

A second generation of kernels, referred to as local, has recently emerged as an alternative
to holistic kernels. The former handle structured data as bags or local sets, i.e., data which
cannot be represented in fixed length and ordered spaces, such as interest points, regions,
blocks, graphs, trees, etc.(Gartner, 2003). It is well known that both holistic and local ker-
nels should satisfy certain properties among them the positive definiteness, low complexity
for evaluation, flexibility in order to handle variable-length data and also invariance. Holis-
tic kernels have the advantage of being simple to evaluate, discriminating but less flexible
than local kernels in order to handle invariance. While the design of kernels gathering
flexibility, invariance and low complexity is a challenging task; the proof of their positive
definiteness is sometimes harder (Cuturi, 2005). This property also known as the Mercer
condition ensures, according to Vapnik’s SVM theory (Vapnik, 1998), optimal generaliza-
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tion performance and also the uniqueness of the SVM solution.

Considering a database of objects (images), each one seen as a constellation of local
features, for instance interest points (Schmid and Mohr, 1997; Lowe, 2004; Lazebnik et al.,
2004), extracted using any suitable filter (Harris and Stephens, 1988). Again, original holis-
tic kernels explicitly (or implicitly) map objects into fixed-length feature vectors and take
the similarity as a decreasing function of any well-defined distance (Barla et al., 2002). In
contrast to holistic kernels, local ones are designed in order to handle variable-length and
unordered data. Two families of local kernels can be found in the literature; those based
on statistical “length-insensitive” measures such as the Kullback Leibler divergence, and
those which require a preliminary step of alignment. In the first family, the authors in
Kondor and Jebara (2003); Moreno et al. (2003) estimate for each object (constellation of
local features) a probability distribution and compute the similarity between two objects
(two distributions) using the “Kullback Leibler divergence” in Moreno et al. (2003) and the
“Bhattacharyya affinity” in Kondor and Jebara (2003). Only the function in Kondor and
Jebara (2003) satisfies the Mercer condition and both kernels were applied for image recog-
nition tasks. In Wolf and Shashua (2003), the authors discuss a new type of kernel referred
to as “principal angles” which is positive definite. Its definition is based on the computa-
tion of the principal angles between two linear subspaces under an orthogonality constraint.
The authors demonstrate the validity of their method on visual recognition tasks including
classification of motion trajectory and face recognition. An extension to subsets of varying
cardinality is proposed in Shashua and Hazan (2004). In this first family of kernels, the main
drawback, in some methods, resides is the strong assumption about the used probabilistic
models in order to approximate the set of local features which may not hold true in practice.

In the second family, the “max” kernel (Wallraven et al., 2003) considers the similarity
function, between two feature sets, as the sum of their matching scores and unlike discussed
in Wallraven et al. (2003) this kernel is actually not Mercer (Bahlmann et al., 2002). In Lyu
(2005), the authors introduced the “circular-shift” kernel defined as a weighted combination
of Mercer kernels using an exponent. The latter is chosen in order to give more prominence
to the largest terms so the resulting similarity function approximates the “max” and also
satisfies the Mercer condition. The authors combined local features and their relative an-
gles in order to make their kernel rotation invariant and they show its performance for the
particular task of object recognition. In Boughorbel (2005), the authors introduced the
“intermediate” matching kernel, for object recognition, which uses virtual local features in
order to approximate the “max” while satisfying the Mercer condition. Recently, Grau-
man and Darrell (2007) introduced the “pyramid-match” kernel, for object recognition and
document analysis, which maps feature sets using a multi-resolution histogram represen-
tation and computes the similarity using a weighted histogram intersection. The authors
showed that their function is positive definite and can be computed linearly with respect
to the number of local features. Other matching kernels include the “dynamic program-
ming” function which provides, in Bahlmann et al. (2002), an effective matching strategy
for handwritten character recognition, nevertheless the Mercer condition is not guaranteed.
The main drawback of these kernels resides in their sensitivity to alignment so this affects
their precision while the first class of local kernels suffers from the lack of discrimination
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as the underlying statistical measures do not take into account the structure of data (for
instance geometry in object recognition).

1.1 Motivation

The success of the second family of local kernels strongly depends on the quality of align-
ments which are difficult to obtain mainly when images contain redundant and repeatable
structures. Regardless the Mercer condition, a naive matching kernel (such as the “max”),
which looks for all the possible alignments and sums the best ones, will certainly fail and re-
sults into many false matches. Figures (1 and 2, left) illustrate the deficiency1 of such naive
context-free kernels when estimating the matching and also similarity between two groups
of interest points. The highest values of the Gram matrix are clearly not concentrated in
the diagonal. The Gaussian kernel, considered as context-free, is used in order to evaluate
similarity between all the pairs of interest points, each one represented by its 3D RGB color
attributes. Any slight perturbation of these attributes will result into unstable matching
results if no context is taken into account (see Fig. 1). The same argument is supported
in Schmid and Mohr (1997), for the general problem of visual features matching, about
the strong spatial and geometric correlations between interest points and the corresponding
close local features in the image space. This limitation also appears in closely related areas
such as text analysis, and particularly string alignment. A simple example, of aligning two
strings (“Sir” and “Hi Sir”) using a simple similarity measure 1{c1=c2} between any two
characters c1 and c2, shows that without any extra information about the context (i.e., the
sub-string) surrounding each character in (“Sir” and “Hi Sir”), the alignment process results
into false matches (see for instance Sahbi et al. (2008)). Hence, it is necessary to consider
the context as a part of the alignment process when designing kernels. Our postulate states
that one does not need perfect matching in order to improve the performance of kernels,
but better alignment should produce better kernels.

1.2 Contribution

In this paper, we introduce a new kernel, called “context-dependent” (“CDK”) and defined
as the fixed-point of an energy function which balances a “fidelity” term and a “neighbor-
hood” criterion. The fidelity is inversely proportional to the expectation of the Euclidean
distance between the most likely aligned features (see Section 2) while the neighborhood
criterion measures the spatial coherence of the alignments; given a pair of features (fp, fq)
with a high alignment quality, the neighborhood criterion is proportional to the alignment
quality of all the pairs close to (fp, fq) but with a given spatial configuration2. The general
form of “CDK” captures the similarity between any two features by incorporating their con-
text and also geometry, i.e., the similarity of the features with exactly the same geometric
configuration with respect to (fp, fq). Our proposed kernel can be viewed as a variant of
“dynamic programming” kernel (Bahlmann et al., 2002) where instead of using the ordering
assumption we consider a context (neighborhood) constraint which states that two points
match if they have similar intrinsic features and if their neighbors with exactly the same

1. Deficiency means the poor discrimination of standard kernels due to the lack of their geometric repre-

sentational power.

2. This is one of the most significant differences w.r.t. our former work.
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geometric configuration match too. This also appears in other well studied kernels such as
Fisher (Jaakkola et al., 1999), which implements the conditional dependency between data
using the Markov assumption. “CDK” also implements such dependency with an extra ad-
vantage of being the fixed-point and the (sub)optimal solution of an energy function closely
related to the goal of our application. This goal is to gather the properties of flexibility,
invariance and mainly discrimination by allowing each local feature to consider its local ge-
ometry in the matching process. Moreover and in contrast to other existing state of the art
approaches (for instance Fischler and Bolles (1981)), the proposed alignment strategy (and
hence our kernel design) is model-free and is not based on any a priori alignment model such
as affinity, homography or similarity which might fail in practice; for instance when objects
deform. Notice also that the goal of this work is not to extend local features to be global
and doing so (as in Mortensen et al. (2005); Amores et al. (2005)) makes local features less
invariant, but rather to design a family of similarity kernels (“CDKs”) which capture the
context/geometry while also being invariant. Even though we investigated “CDKs” in the
particular task of object recognition and retrieval, we can easily extend it to handle closely
related areas in machine learning such as text alignment for document retrieval (Nie et al.,
1999), machine translation (Sim et al., 2007) and bioinformatics (Scholkopf et al., 2004).

Given a database of images, each one seen as a constellation of local features. We use
convolution kernels (see Section 2.2) in order to build similarity or Gram matrices, consist-
ing of all the possible cross similarities of images in the database. A convolution kernel,
as will be reminded in Section (2.2), is the sum of all possible cross similarities each one
computed using a minor kernel; actually “CDK”. Again, the minor kernel (“CDK”) is the
fixed point of an energy function which contains (i) a “fidelity” term which measures how
similar are two primitives (ii) a “context/neighborhood” criterion which measures how good
two primitives, with exactly the same context/geometric configuration, match and (iii) an
“entropy” term which considers that without any a priori knowledge about the matching
results between two primitives, the joint probability distribution of matchings should be as
flat as possible so this term acts as a regularizer; furthermore it helps finding a direct and
an easy to evaluate solution.

Notice that this work is the continuation of a previous work (Sahbi et al., 2008) with
several updates and improvements:

• The notion of similarity and context is updated with finer statistics and measurements
about geometry and co-occurrence (see Section 2.1).

• The theoretical results about the Mercer condition and the convergence to the fixed
point are updated so now our framework provides better and loose constraints about
the setting of some parameters as will be shown in Section 4.

• And, as will be shown in proposition 2, under certain circumstances about the choice
of other parameters; actually adjacency matrices defined in 2.3, any Gram matrix
built using “CDK” will be full rank so invertible.

In case of SVM, resp. SVR (support vector regression), the last property guarantees the
existence of a classifier which separates (resp. approximates) a training set whatever its
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Figure 1: This figure shows a comparison of the matching results when using a naive (context-free)
matching strategy and our “context-dependent” kernel matching. Second and fourth
rows show the distribution of kernel values k(xi, xj), i ∈ Ip, j ∈ Iq using a context-free
kernel (left) and our “CDK” kernel (right). We can clearly see that the highest values
change their locations so the matching results are now corrected.
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labeling. This property is very desired and shows the discrimination power of “CDK” even
though it is known that this will make the underlying VC dimension (Vapnik, 1998) infinite.
Nevertheless, the actual VC dimension is bounded by the size of the training set as SVMs
(resp. SVRs) find the solution in the span of training data so theoretical generalization
bounds (Vapnik, 1998) are in practice not loose.

We consider the following organization of the paper; we first introduce in Section 2,
our energy function which makes it possible to design our context-dependent kernel while
integrating context/geometry and we show that this kernel satisfies the Mercer condition
so we can use it for support vector machine training and other kernel methods. In Section
3 we show the application of this kernel in object recognition. We discuss in Section 4 the
advantages and weaknesses of this kernel and the possible extensions in order to handle
other tasks such as video retrieval. We conclude in Section 5 and we provide some future
research directions.

Figure 2: The caption of figure (1) is similar, but now we threshold the Gram matrices so only the
maximum value of each row is set to a constant. We clearly see the improvement brought
by CDK.

2. Incorporating Context and Geometry in Kernel Design

Let Sp = {xp
1, . . . , x

p
n} be the list of interest points of object p (the value of n may vary with

the object p). The set X of all possible interest points is the union over all possible object
p of Sp:

X = ∪pSp.

We consider k : X × X → R as a symmetric function which, given two interest points
(xp

i , x
q
j), provides a similarity measure between them. Our goal is to design a similarity

between any two objects p and q, by designing a kernel K between the list of interest points
Sp and Sq characterizing the objects p and q.
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2.1 Context and Co-occurrence

A feature refers to a local interest point x = (ψg(x), ψf (x), ψo(x), ω(x)). The symbol ψg(x) ∈
R

2 stands for the 2D coordinates of the interest-point x while ψf (x) ∈ R
s corresponds to

the descriptor of x (for instance the 128 coefficients of the SIFT; Lowe (2004)). In case of
SIFT, we have an extra information about the orientation of x (denoted ψo(x) ∈ [−π,+π])
which is provided by the SIFT gradient. Finally, we use ω(x) to denote the object from
which the interest point comes from, so that two interest points with the same position,
descriptor and orientation are considered different when they are not in the same image
(this is not surprising since we want to take into account the context of the interest point).

Let d(x, x′) = ‖ψf (x) − ψf (x′)‖2 measure the similarity between two interest point
descriptors. Introduce

N θ,ρ(x) = {x′ : ω(x′) = ω(x), x′ 6= x s.t. (i) and (ii) hold},

with
ρ− 1

Nr
ǫp ≤ ‖ψg(x) − ψg(x

′)‖2 ≤ ρ

Nr
ǫp, (i)

and
θ − 1

Na
π ≤ ∠

(

ψg(x), ψg(x
′) − ψg(x)

)

≤ θ

Na
π. (ii)

Here ǫp defines a neighborhood and θ = 1, ..., Na, ρ = 1, ..., Nr. Notice that the definition
of the neighborhood in this paper is different from the one proposed in Sahbi et al. (2008),
as the latter provides only a set of neighbors N (x) around x which are not segmented
into different parts. In Sahbi et al. (2008), Np(x) = ∪θ,ρN θ,ρ(x), so the new definition

of neighborhoods {N θ,ρ
p (x)}θ,ρ reflects the co-occurrence of different interest points with

particular geometric constraints (see Fig. 3).

2.2 Convolution Kernels

Definition 1 (Subset Kernels) let X be an input space, and consider Sp,Sq ⊆ X as two
finite subsets of X . We define the similarity function or kernel K between Sp = {xp

i } and

Sq = {xq
j} as K(Sp,Sq) =

∑n
i

∑m
j k

(

xp
i , x

q
j

)

.

Here k is symmetric and continuous on X ×X , so K will also be continuous and symmetric,
and if k is positive definite then K will also be positive definite (Haussler, 1999). Since K is
defined as the cross-similarity k between all the possible sample pairs taken from Sp × Sq,
it is obvious that K has the big advantage of not requiring any (hard) alignment between
the samples of Sp and Sq. Nevertheless, for a given Sp, Sq, the value of K(Sp,Sq) should be

dominated by
∑

i maxj k
(

xp
i , x

q
j

)

, so the minor kernel k should be appropriately designed.

2.3 Minor Kernel Design

For a finite collection of objects having each a finite number of interest points, the set X is
finite. Provided that we put some (arbitrary) order on X , we can view a kernel k on X as a
matrix K in which the “(x, x′)−element” is the similarity between x and x′: Kx,x′ = k(x, x′).
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Figure 3: This figure shows the distribution of SIFT interest points (location, orientation and
scales) (left) and the partitioning of the neighborhood of a given point into different
sectors for orientations and bands for location and scale.

Let Pθ,ρ be the intrinsic adjacency matrices respectively defined as Pθ,ρ,x,x′ = gθ,ρ(x, x
′),

where g is a decreasing function of any (pseudo) distance involving (x, x′), not necessarily
symmetric. In practice, we consider gθ,ρ(x, x

′) = 1{ω(x)=ω(x′)} ×1{x′∈N θ,ρ(x)}. Let Dx,x′ =
d(x, x′). We propose to use the kernel on X defined by solving

min
K

Tr
(

K D
′)

+ β Tr
(

K log K
′)

− α
∑

θ,ρ

Tr
(

K Pθ,ρ K′ P′
θ,ρ

)

(1)

s.t.

{

K ≥ 0

‖K‖1 = 1

Here the operations
√

, log and ≤ are applied individually to every entry of the matrix
(for instance, log K is the matrix with (log K)x,x′ = log k(x, x′)), ‖ · ‖1 is the “entrywise”
L1-norm (i.e., the sum of the absolute values of the matrix coefficients) and Tr denotes
matrix trace. The first term, in the above constrained minimization problem, measures the
quality of matching two descriptors ψf (x), ψf (x′). In the case of SIFT, this is considered
as the distance, d(x, x′), between the 128 SIFT coefficients of x and x′. A high value of
d(x, x′) should result into a small value of k(x, x′) and vice-versa.
The second term is a regularization criterion which considers that without any a priori
knowledge about the aligned samples, the probability distribution {k(x, x′)} should be flat
so the negative of the entropy is minimized. This term also helps defining a simple solution
and solving the constrained minimization problem easily. The third term is a neighborhood
criterion which considers that a high value of k(x, x′) should imply high kernel values in
the neighborhoods N θ,ρ(x) and N θ,ρ(x′). This criterion makes it possible to consider the
context and geometry (spatial configuration) of each sample in the matching process.
We formulate the minimization problem by adding an equality constraint and bounds which
ensure a normalization of the kernel values and allow to see {k(x, x′)} as a probability distri-
bution on X×X . Besides, for two different objects p and q, {k(x, x′)/∑

x:ω(x)=p,x′:ω(x′)=q k(x, x
′)}

can be seen as a probability on Sp × Sq.
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2.4 Solution

Proposition 2 Let u denote the matrix of ones and introduce

ζ =
α

β

∑

θ,ρ

‖Pθ,ρuP′
θ,ρ + P′

θ,ρuPθ,ρ‖∞,

where ‖ · ‖∞ is the “entrywise” L∞-norm. Provided that the following two inequalities hold

ζ exp(ζ) < 1 (2)

‖ exp(−D/β)‖1 ≥ 2 (3)

the optimization problem (1) admits a unique solution K̃, which is the limit of the context-
dependent kernels

K(t) =
G(K(t−1))

‖G(K(t−1))‖1
,

with

G(K) = exp

{

− D

β
+
α

β

∑

θ,ρ

(

Pθ,ρKP′
θ,ρ + P′

θ,ρKPθ,ρ

)

}

,

and

K(0) =
exp(−D/β)

‖ exp(−D/β)‖1

Besides the kernels K(t) satisfy the convergence property:

‖K(t) − K̃‖1 ≤ Lt‖K(0) − K̃‖1. (4)

with L = ζ exp(ζ).

By taking not too large β, one can ensure that (3) holds. Then by taking small enough
α, Inequality (2) can also be satisfied. Note that α = 0 corresponds to a kernel which is
not context-dependent: the similarities between neighbors are not taken into account to
assess the similarity between two interest points. Besides our choice of K(0) is exactly the
optimum (and fixed point) for α = 0.

To have partitioned the neighborhood into several cells corresponding to different de-
grees of proximity (as shown in Fig. 3) has lead to significant improvements of our exper-
imental results. On a theoretical viewpoint, it allows us to consider a larger α (since the
constraint (2) becomes easier to satisfy with partitioned neighborhood), and apparently a
more positively influencing context-dependent term (last term in (1)).
Proof Introduce the function

F : K 7→ Tr
(

K D
′)

+ β Tr
(

K log K
′)

− α
∑

θ,ρ

Tr
(

K Pθ,ρ K′ P′
θ,ρ

)

.
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This function is continuous on the compact set defined by the constraints in (1) so it admits
a minimum on it. Since the function t 7→ t log t on the real numbers has an infinite negative
derivative when t tends to zero, none of the Kx,x′ are equal to 0 at the minimum. Since
the constraint K ≥ 0 is not active on a minimum, the minima of F are obtained when the
gradient of F is parallel to the gradient of the active constraint

∑

x,x′ Kx,x′ = 1, i.e. when
there exists λ′ ∈ R such that for any x, x′ ∈ X ,

∂F

∂Kx,x′

= λ′,

hence when

D + β(u + log K) − α
∑

θ,ρ

(

Pθ,ρKP′
θ,ρ + P′

θ,ρKPθ,ρ

)

= λ′u,

where we recall that u denotes the matrix of ones. So the minimum satisfies necessarily the
fixed point relation

K =
G(K)

‖G(K)‖1
,

with (5)

G(K) = exp

{

− D

β
+
α

β

∑

θ,ρ

(

Pθ,ρKP′
θ,ρ + P′

θ,ρKPθ,ρ

)

}

,

where the function exp is applied individually to every entry of the matrix. We will now
prove the unicity of the solution of this fixed point equation (5).

Lemma 3 Let B be the set of matrices with nonnegative entries and of unit L1-norm, i.e.,
B =

{

K : K ≥ 0, ‖K‖1 = 1
}

. If we have ‖ exp(−D/β)‖1 ≥ 2, then the function ψ : B → B
defined as ψ(K) = G(K)/‖G(K)‖1 is L-Lipschitzian, with L = ζ exp(ζ), where we recall
the definition ζ = α

β

∑

θ,ρ ‖Pθ,ρuP′
θ,ρ + P′

θ,ρuPθ,ρ‖∞.

As a consequence of this lemma, as soon as we have L = ζ exp(ζ) < 1, the fixed point
equation (5) admits a unique solution K̃, and Inequality (4) holds.
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Proof [Proof of Lemma 3] Let K1 and K2 be two matrices in B. Introduce G1 = G(K1)
and G2 = G(K2). We have

‖ψ(K2) − ψ(K1)‖1

=

∥

∥

∥

∥

G2

‖G2‖1
− G1

‖G1‖1

∥

∥

∥

∥

1

≤
∥

∥

∥

∥

G2

‖G2‖1
− G2

‖G1‖1

∥

∥

∥

∥

1

+

∥

∥

∥

∥

G2

‖G1‖1
− G1

‖G1‖1

∥

∥

∥

∥

1

= min
K:‖K‖1=1

∥

∥

∥

∥

K − G2

‖G1‖1

∥

∥

∥

∥

1

+

∥

∥

∥

∥

G2

‖G1‖1
− G1

‖G1‖1

∥

∥

∥

∥

1

≤
∥

∥

∥

∥

G1

‖G1‖1
− G2

‖G1‖1

∥

∥

∥

∥

1

+

∥

∥

∥

∥

G2

‖G1‖1
− G1

‖G1‖1

∥

∥

∥

∥

1

=
2

‖G1‖1
‖G2 − G1‖1

≤ ‖G2 − G1‖1, (6)

where the last inequality uses the assumption of the lemma. To upper bound the last
difference, we use Taylor’s formula. Consider y, y′ in X . Let ∆G =

∣

∣G2 − G1

∣

∣ and ∆K =
∣

∣K2 − K1

∣

∣ be the matrices defined by [∆G]x,x′ =
∣

∣[G2]x,x′ − [G1]x,x′

∣

∣ and [∆K]x,x′ =
∣

∣[K2]x,x′ − [K1]x,x′

∣

∣. We have

β

α

∂[G(K)]y,y′

∂Kx,x′

=
∑

θ,ρ

(

[Pθ,ρ]x,y[Pθ,ρ]x′,y′ + [Pθ,ρ]y,x[Pθ,ρ]y′,x′

)

[G(K)]y,y′ .

Therefore we have

β

α
[∆G]y,y′

≤
∑

θ,ρ

[

P′
θ,ρ∆KPθ,ρ + Pθ,ρ∆KP′

θ,ρ

]

y,y′
‖G(K)‖∞,

which implies

β

α
‖G2 − G1‖1

=
β

α

∑

y,y′

[∆G]y,y′

≤
∑

θ,ρ

Tr
(

P′
θ,ρ∆KPθ,ρu + Pθ,ρ∆KP′

θ,ρu
)

‖G(K)‖∞

≤
∑

θ,ρ

‖Pθ,ρuP′
θ,ρ + P′

θ,ρuPθ,ρ‖∞‖∆K‖1‖G(K)‖∞.

12
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Now we trivially have

0 ≤ G(K) ≤ exp

{

α

β

∑

θ,ρ

(

Pθ,ρuP′
θ,ρ + P′

θ,ρuPθ,ρ

)

}

,

hence we obtain

‖G2 − G1‖1 ≤ ζ‖∆K‖1 exp(ζ).

Plugging this inequality into (6), we get

‖ψ(K2) − ψ(K1)‖1 ≤ ζ exp(ζ)‖K2 − K1‖1.

2.5 Mercer Condition

A kernel k : X × X → R is positive (semi-)definite or is a Mercer kernel on X , if and
only if the underlying Gram matrix K is positive (semi-)definite. In other words, it is
positive definite if and only if we have V ′KV > 0 for any vector V ∈ R

X − {0}. When
we just have V ′KV ≥ 0 for any vector V ∈ R

X − {0}, we just say that it is positive semi-
definite. A Mercer kernel guarantees the existence of a Reproducing Kernel Hilbert Space
(RKHS) (Shawe-Taylor and Cristianini, 2000) such that k(x, x′) = 〈φ(x), φ(x′)〉, where φ is
an explicit (or more likely implicit) mapping function from X to the RKHS, and 〈·, ·〉 is the
dot kernel in the RKHS.

Proposition 4 The context-dependent kernels on X defined in Proposition (2) by the ma-
trices K̃ and K(t), t ≥ 0, are positive definite.

Proof Let us prove that if K is positive semi-definite then G(K) is also positive definite.
We start by noticing that for a positive definite matrix K and for any matrix P, the matrix
PKP′ is positive semi-definite since we have

V ′PKP′V = (P′V )′K(P′V ) ≥ 0.

So the matrix A = α
β

∑

θ,ρ

(

Pθ,ρKP′
θ,ρ + P′

θ,ρKPθ,ρ

)

is positive semi-definite. As a con-
sequence, from (Shawe-Taylor and Cristianini, 2000, Proposition 3.12 p.42), the matrix
∑ℓ

i=1
Ai

i! is also positive semi-definite, where Ai is the matrix such that [Ai]x,x′ = (Ax,x′)i

(that is, we consider the entrywise product, and not the matricial product). We get that

exp(−D/β)
∑ℓ

i=1
Ai

i! , and consequently B = exp(−D/β)
∑∞

i=1
Ai

i! , are also positive semi-
definite. Since we have

G(K) = exp(−D/β) + B,

with B positive semi-definite and exp(−D/β) positive definite (since it is a Gaussian kernel),
we have thus proved that G(K) is positive definite.

We now proceed by induction to prove that the functions K(t) are positive definite. The
function K(0) is positive definite since it is a Gaussian kernel (up to a positive multiplicative
factor). Since K(t) is equal to G(K(t−1)) up to a positive multiplicative factor, we have by
induction that K(t) is a positive definite kernel. Since K̃ is the limit of K(t), we obtain
that K̃ is positive semi-definite. From this and the fixed point equation satisfied by K̃, we
obtain that K̃ is positive definite.

13
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3. Experiment

3.1 Databases and Settings

In order to show the extra-value of the “CDK” kernel with respect to standard usual ones,
we evaluate the performances of support vector classifiers on different databases ranging
from simple ones such as the Olivetti to more challenging such as the SmithSonian. The
latter contains 35 leaf species, each one represented with 4 − 100 examples, resulting into
1.525 images while the former is a face database of 40 persons each one contains 10 in-
stances. We also experimented “CDK” on the standard MNIST database containing 10
digits, each one represented by ∼ 7.000 examples (see Fig. 7). Interest points are extracted
from all these databases and encoded using the usual SIFT descriptor.

Performances are measured using the Hold-Out error rate; in case of Olivetti and Smith-
Sonian, half of data was used for training and the other half for testing while in case of
MNIST only 40 examples per digit were used for training and the remaining data was used
for testing. The use of this small training set is motivated by the run-time overhead due to
estimating the Gram matrix. In spite of this extreme small limit in the size of the training
samples, the reported results of “CDK” are significantly better compared to standard ker-
nels as will be shown in the remainder of this section.

Figure 4: This figure shows samples from Smithsonian leaf, MNIST digits and Olivetti face

databases.

3.2 Hold-Out Generalization and Comparison

We evaluate K (see section 2.2) and hence K(t), t ∈ N
+ using three power assist set-

tings: (i) linear K
(0)
x,x′ = 〈ψf (x), ψf (x′)〉 (ii) polynomial K

(0)
x,x′ = (〈ψf (x), ψf (x′)〉 + 1)2

and (iii) Gaussian K
(0)
x,x′ = exp(−‖ψf (x) − ψf (x′)‖2/β). Our goal is to show the improve-

ment brought when using K(t), t ∈ N
+ , so we tested it against the standard context-

14
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Gaussian Oliv MNIST Smith
log β (error+std) (error+std) (error+std)

−2 1.62% ± 1.20 36.94% ± 6.42 6.65% ± 4.64
−1 1.12% ± 2.26 10.4% ± 6.14 3.49% ± 2.38
0 1.68% ± 3.41 12.7% ± 5.09 9.38% ± 8.85
1 14.5% ± 12.3 10.9% ± 6.10 15.5% ± 13.2

Table 1: This figure shows the error rate w.r.t the scale of the Gaussian kernel β.

free kernels (i.e., K(t), t = 0). For this purpose, we trained “one-versus-all” SVM clas-
sifiers for each class in SmithSonian, MNIST and Olivetti sets using the subset kernel

K(Sp,Sq) =
∑

x∈Sp,x′∈Sq
K

(t)
x,x′ . Again, performances are reported, on different test sets,

using the Hold Out error rate (see Fig. 5).

The setting of β is performed by maximizing the performance of the Gaussian kernel as
the latter corresponds the left-hand side (and the baseline form) of K(t), i.e., when3 α = 0.
For different databases, we found that the best performances are achieved4 for β = 0.1 and
this also guarantees condition (3). The influence (and the performance) of the right-hand
side of K(t), α 6= 0 increases as α increases (see Table. 2 and Fig. 6), nevertheless and as
shown earlier, the convergence of K(t) to a fixed point is guaranteed only if (2) is satisfied.
Therefore, it is obvious that α should be set to the highest possible value which also satisfies
condition (2).

Diagrams in (5), show the hold out generalization errors and standard deviations resp.
(from top-to-bottom) on Olivetti, SmithSonian and MNIST for different iterations; we
clearly see the out-performance and the improvement of the “CDK” kernel (i.e., K(t),
t ∈ N

+) with respect to the context-free kernels (i.e., K(0).) We notice that both the
Smithsonian and MNIST datasets are difficult compared to Olivetti, so the performances
are worse on the former sets. Nevertheless, the improvement brought by CDK w.r.t. stan-
dard kernels is clear and consistent.

4. Discussion

Needless to say, interest points are order-less and variable-length, so it is meaningless to
compare all the previous results w.r.t. holistic kernels. CDK clearly balances between holis-
tic and local kernels as it allows us to have a local representation and similarity between
images while taking into account the spatial configuration and the coocurence of interest
points. Global kernels are very sensitive to misalignment of features due to transformations
while local kernels are less sensitive to these effects but less discriminating. “CDKs” gather

3. Notice that selecting β independently from α is obviously “not sub-optimal” for CDK but “sub-optimal”

for the Gaussian kernel.

4. As the 128 SIFT coefficients are normalized to 1, it is not unreasonable that the optimal β is the same

for the three used test sets.
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Figure 5: Error rates (left) and standard deviations (right) on resp. Olivetti, SmithSonian and

MNIST test sets.(α = 0.1 and β = 0.1)

Figure 6: This figure shows the evolution of sample matches on a picture taken from

’http://www.robots.ox.ac.uk/∼vgg/hzbook/code/’, for different and increasing values of

α (resp, from top-left to bottom-right, 0, 0.1, 2.5, 3, 3.5, 4, 4.5 and 5). We clearly see

that when α increases the matching results are better. We set β = 0.1 and t = 1 iteration

only.
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Database Oliv MNIST Smith
logα (error+std) (error+std) (error+std)

−4 1.12% ± 2.26 10.4% ± 6.14 3.49% ± 2.38
−3 1.12% ± 2.18 10.3% ± 6.13 3.49% ± 2.38
−2 0.93% ± 1.85 9.69% ± 5.90 3.49% ± 2.38
−1 0.68% ± 1.13 5.32% ± 2.38 2.22% ± 1.90

Table 2: This figure shows that error rate is a decreasing function of α. Gaussian kernel is used for
initialization, β = 0.1.

Figure 7: This figure shows samples of matches from the Smithsonian database, without CDK (left)

and with CDK (right).

Figure 8: This figure shows samples of matching results using a context free kernel, actually Gaus-
sian (left) and context dependent kernel (right).
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these two properties while also being Mercer.

The adjacency matrices Pθ,ρ, in K, provides the intrinsic properties and also character-
izes the geometry of objects {Sp} in X . It is easy to see that Pθ,ρ is translation and rotation
invariant and can also be made scale invariant when ǫp (see (i)) is adapted to the scales of
ψg(Sp). It follows that the right-hand side of our kernel is invariant to any 2D similarity
transformation. Notice, also, that the left-hand side of K(t) may involves similarity invari-
ant descriptors ψf (.) (for instance SIFTs), so K(t) (and also K) is similarity invariant.

The out-performance of our kernel comes essentially from the inclusion of the context;
in almost all cases, one iteration was sufficient in order to improve the performance of the
Gaussian kernel, and couple iterations for the other context-free kernels. On the one hand,
this corroborates the fact that the Gaussian kernel provides state of the art performance,
when its parameters are well chosen (see section 3.2), and on the other hand, its perfor-
mance can be consistently improved by including the intrinsic properties (i.e., geometry
and context) of objects. Even though tested only on visual object recognition, our “CDK”
kernel can be extended to many other pattern analysis problems such as bioinformatics,
speech, text, etc. For instance, in text analysis and particularity machine translation (Sim
et al., 2007), the design of a similarity kernel between words in two different languages,
can be achieved using any standard dictionary (for instance WordNet). Of course, the lat-
ter defines similarity between any two words (we, wf ) independently from their bilingual
training text (or bitext), i.e., the phrases where (we, wf ) might appear and this results into
bad translation performances. A better estimate of similarity between two words (we, wf ),
can be achieved using their context i.e., the set of words which cooccure frequently with
(we, wf ) (Koehn et al., 2003).

Other extensions of this work may include:

• The interpolation of “CDK” on unseen data points, when training (and test) data are
added incrementally.

• The refinement of the adjacency matrices which are currently estimated using scale
and orientation of the SIFT features. According to our experiments, the orienta-
tion and scale are reasonably precise but might not be sufficiently consistent through
scenes, even when SIFT points are repeatable; so one may start with a coarse es-
timation of the adjacency matrices and consider their refinement as a part of the
minimization process (see equation 1) using expectation maximization.

• And also the application of the method in video search by considering instead of
“geometric” context, the “spatio-temporal adjacency” and context between frames in
video sequences.

• Finally, one current limitation of our “CDK” kernel K(t) resides in its evaluation
complexity. Assuming K(t−1) known, for a given pair x, x′, the worst complexity is
O

(

max(N2, s)
)

, where s is the dimension of ψf (x) and N = maxx,p,θ,ρ #{N θ,ρ
p (x)}.

It is clear enough that when N <
√
s, the complexity of evaluating our kernel is

strictly equivalent to that of usual kernels such as the linear. Nevertheless, the worst
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case (N ≫ √
s) makes our kernel evaluation prohibitive and this is mainly due to the

right-hand side of K
(t)
x,x′ which requires the evaluation of kernel sums in a hypercube

of dimension 4. A simple and straightforward generalization of the integral image (see
for instance Viola and Jones (2001)) will reduce this complexity to O (s). An other
possibility for speed up, mainly in image retrieval, considers the fact that this kernel
is Mercer, so it might be used in order to define a metric and exploit lossy (or not)
acceleration techniques based on pivots or kd-trees.

5. Conclusion

We introduced in this paper a new type of kernels referred to as context-dependent. Its
strength resides in the improvement of the alignments between interest points which is con-
sidered as a preliminary step in order to increase the robustness and the precision of object
recognition. We have also shown that our kernel is Mercer and applicable to SVM learning.
This is achieved for object and shape recognition problems and has better performance than
SVM with context-free kernels.

The proposed approach, even though presented for kernel design, might be straight-
forwardly seen as graph matching. Indeed, one may define graph adjacency matrices and
use exactly the same energy as (1) in order to derive similarity between nodes belonging to
two different graphs. Obviously, matches correspond to pairs which maximize kernel values.

Future work includes the comparison of our kernel with other context-free kernels and
its application in scene understanding.
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