
 

 
 

 

 

 

 

 

 

 

 

 

Weighted maximum likelihood denoising with 
iterative and probabilistic patch-based weights 

 

Débruitage par maximum de vraisemblance pondérée 
par une méthode non-locale itérative et probabiliste 

 
 

 
 

Charles-Alban Deledalle 
Loïc Denis 

Florence Tupin 
 
 

 

 
 

 
 

 

 
Mai 2005 

 

 
 

Janvier 2009 
 

 

 

 

Département Traitement du Signal et des Images 
Groupe TII : Traitement et Interprétation des Images 

 

 

 

 

 
 
 
 

 

 

 

2009D004 

 



1

Débruitage par Maximum de Vraisemblance

Pondérée par une Méthode Non-Locale

Iterative et Probabiliste
Charles-Alban Deledalle, Loïc Denis et Florence Tupin

Résumé

Le débruitage d’images est un problème important en traitement d’images puisque le bruit rend

difficile l’interprétation visuelle et automatique des images. Ainsi, une étape de prétraitements est souvent

requise pour débruiter les image avant de procéder à leur analyse. L’objectif est de présenter une nouvelle

approche pour le débruitage d’images quand un modèle de bruit décorrélé est disponible. Le filtre proposé

est une généralisation de l’algorithme des moyennes non locales introduit par Buades et al. (2005), qui

réalise une moyenne des valeurs des pixels similaires (les pixels ayant des voisinages similaires). La

définition du filtre est plus générale puisqu’elle se base sur une estimation au sens du maximum de

vraisemblance pondéré dont les poids sont définis via des patches et adaptés au modèle de bruit (et

non pas seulement aux bruits blancs additifs Gaussiens). Nous proposons aussi d’étendre l’algorithme

des moyennes non locales à un schéma itératif similaire à l’approche “expectation-maximization” de

Dempster (1977) qui semble plus pertinent pour des images ayant un faible rapport signal sur bruit. Les

expériences ont été menées sur l’image “Lena”, dégradée pas un fort bruit blanc additif Gaussien, et sur

des images radar à ouverture synthétique, corrompues par un bruit de chatoiement multiplicatif.

Mots-clés

Débruitage d’images, moyennes non-locales, maximum de vraisemblance pondérée, imagerie radar

à synthèse d’ouverture
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Weighted Maximum Likelihood Denoising with

Iterative and Probabilistic Patch-Based Weights

Charles-Alban Deledalle, Loı̈c Denis and Florence Tupin,

Abstract

Image denoising is an important problem in image processing since the noise makes difficult their

visual or automatic interpretation. Hence, a well-adapted preprocessing step is required to denoise

the images before analyzing them. The paper presents a new approach for image denoising when an

uncorrelated noise model is provided. The proposed filter is a generalization of the non local means

algorithm introduced by Buades et al. [1], which performs an average of the values of similar pixels

(pixels with similar neighborhoods). The definition of the filter is more general since it is based on a

weighted maximum likelihood estimation with patch-based weights adapted to a noise model (without

restriction to additive white Gaussian noise). We also propose to extend the non local means to an

iterative scheme similar to the expectation-maximization approach [2] which seems especially relevant

for low signal to noise ratio images. The experiments are realized on the “Lena” image, corrupted by a

strong additive white Gaussian noise, and on Synthetic Aperture Radar (SAR) images, corrupted by a

multiplicative speckle noise.

Index Terms

Image denoising, Non Local means (NL means), Weighted Maximum Likelihood Estimation (WMLE),

Patch-Based methods, Synthetic Aperture Radar (SAR)
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I. INTRODUCTION

This paper presents a denoising method using a weighted maximum likelihood estimator with prob-

abilistic patch-based weights. An iterative procedure is used to refine the estimations of the weights

and seems to be well adapted for low signal to noise ratio images. The filter performances are given

on images damaged by a strong additive White Gaussian Noise (WGN) and Synthetic Aperture Radar

(SAR) images damaged by a multiplicative speckle noise.

Image denoising consists of retrieving the “true” image from a noisy image. Numerous denoising

methods have been proposed in the literature. Their definitions can be very different, as the anisotropic

diffusion [3], the total variation minimization [4], [5] and the wavelet thresholding [6]. However, most of

them can be traced back to a weighted averaging of the noisy image pixel values [7] in order to retrieve

the true image. Their difference lies in the definition of the weights. According to different assumptions

and models, lots of weight definitions have been proposed. Recently, Buades et al. presented the Non-

Local (NL) means filter [1]. This one performs a weighted averaging based on patches which relies on

image redundancy. The weights are set in function of a weighted Euclidean distance between patches

centered around the pixels of the image. The NL means filter gives very good results and has attracted

lot of attention these last years. Unfortunately, this method suffers from a lack of flexibility to be applied

for any noise distribution since the Euclidean distance is adapted for additive WGN.

This paper presents the Probabilistic Patch-Based (PPB) filter which is a generalization of the NL

means filter. Indeed, PPB corresponds to the NL means filter in the case of additive WGN model.

However, PPB is not necessarily a weighted averaging filter since it is derived from a patch-based

weighted maximum likelihood which can be adapted to different noise models (i.e., not only restricted to

additive WGN models). PPB can process any image corrupted by an uncorrelated noise model when the

probability density function, which models the noise component, is known. Note that is different from the

unsupervised information-theoretic adaptive filter [8] which is general since it does not make assumptions

neither about image nor noise properties. Moreover, PPB is well-adapted for low signal to noise ratio

images thanks to an iterative procedure which refines the patch-based weights. Some generalizations and

iterative frameworks of the NL means filter have already been proposed in [9]–[13] and will be considered

in the following.

Section II introduces the PPB filter as a weighted likelihood estimator where weights are patch-based

and defined by a probabilistic approach. Section III presents the iterative procedure based on a Bayesian

framework with a prior model defined by a Kullback-Leibler criterion in the gray levels of a previously
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estimated image. Section IV presents two applications of PPB adapted respectively to additive WGN and

to the multiplicative speckle noise present in SAR images. Finally, Section V presents the experiments

carried out on optical and SAR images.

II. PATCH-BASED WEIGHTED MAXIMUM LIKELIHOOD

This section presents the probabilistic patch-based filter as a weighted maximum likelihood estimation

with a probabilistic patch-based weight definition.

A. Weighted Maximum Likelihood

The image denoising problem is considered as the estimation û of a “true” image u∗ from a noisy

observation u. The images are considered to be defined over a discrete regular grid Ω and we denote

by us a pixel value at site s ∈ Ω. We assume the noise is uncorrelated and that a model of the noise is

available at site s (namely the likelihood). We consider this noise model at each site s as a random process

governed by an unknown parameter θ∗s , and described by the probability density function p(us|θ∗s ). The
parameter θ∗ can be different from u∗. However, we assume the noise-free image u∗ is directly related

to this unknown parameter θ∗. For instance, in the following, the denoised amplitude of the SAR images

will be different from the estimated parameter (the reflectivity) but will be equal to its square root. Then,

to denoise an image is equivalent to find the best estimation θ̂ of θ∗.

For each site s, the Maximum Likelihood Estimation (MLE) is defined as the estimation θ̂s of the

underlying parameter θ∗s from a set of independent and identically distributed random variables:

θ̂(MLE)
s = arg max

θs

∑

t∈Sθ∗
s

log p(ut|θs)

= arg max
θs

∑

t

δSθ∗
s

(t) log p(ut|θs),

where Sθ∗

s
is the set of the sites governed by the same distribution θ∗s and δSθ∗

s

is the indicator function

of Sθ∗

s
(i.e., δSθ∗

s

(t) = 1 if t ∈ Sθ∗

s
, 0 otherwise). The MLE is unbiased and asymptotically efficient. In

practice, the sets Sθ∗

s
for all s ∈ Ω are unknown, since the knowledge of Sθ∗

s
is equivalent to that of the

noise-free image θ∗. Hence, a good trade-off is to approximate the indicator δSθ∗
s

(t) by a weight w(s, t).

The Weighted Maximum Likelihood Estimation (WMLE) is given by

θ̂(WMLE)
s = arg max

θs

∑

t

w(s, t) log p(ut|θs) (1)

where the weights w(s, t) ≥ 0 are defined according to the interaction of the sites s and t. As shown in

Section IV, in the particular case of additive White Gaussian Noise (WGN) model, the best estimation
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is defined by a Weighted Averaging (WA):

θ̂(WA)
s =

∑

t w(s, t)ut
∑

t w(s, t)
. (2)

This is consistent with the numerous denoising methods existing in image processing and based on a

weighted averaging. The weights used to approximate the indicator function can be seen as membership

values over a fuzzy set version of Sθ∗

s
(as soon as the weights verify 0 ≤ w(s, t) ≤ 1). This fuzzy set

introduces a bias in the estimation since similar noisy values coming from different distributions are

incorporated. However, this drawback is counterbalanced by decreasing the variance of the estimation.

Actually, more pixel values are included in the fuzzy set which decreases the variance of the estimation

(note that for pixel values defined on a continuum, the probability measure P (θs = θp) is zero, which

means that we almost never find two pixels following the same distribution, thus we do not average pixel

values therefore leaving the noisy image unchanged). According to this bias-variance trade-off, WMLE

can outperform MLE for well-chosen weights. That is the purpose of the next section.

B. Setting the Weights between Noisy Patches

The definition of the weights w(s, t) is the main problem addressed here. A well-done definition of

the weights constitutes the key to the success of the WMLE filter. Under ergodic process assumption,

w(s, t) can be defined locally in the neighborhood of the site s. That is the case of the Box filter

(also known as multi-look filter in the context of SAR images processing) and the Gaussian filter. The

local neighborhood is fixed by the weights w(s, t) which increase when the sites s and t are closer.

Unfortunately, this kind of filter is inappropriate to denoise singular features such as edges and textures

for which the ergodicity assumption is invalid. Instead of defining w(s, t) in spatial domain, Yaroslavsky

proposed a weight definition based on gray level scale [14] also known as sigma-filter [15]. The weight

w(s, t) increases when the values us and ut are more similar. Such a filter was then refined by the

SUSAN filter [16] and the bilateral filter [17] which is defined both in spatial and gray level scales.

More recently, Buades et al. proposed the Non-Local (NL) means filter which relies on image redun-

dancy [1]. It takes inspiration on the patch-based approach proposed for texture synthesis by Efros and

Leung [18]. The weight w(s, t) is defined by comparing two patches ∆s and ∆t centered respectively

around the sites s and t:

w(s, t)(NL) := exp

(

− 1

h2

∑

k

αk|us,k − ut,k|2
)

(3)

where us,k and ut,k is relatively the k-th neighbor in the patch ∆s and ∆t, the weights αk define a

centered symmetric Gaussian kernel and h2 controls the decay of the exponential function. The setting
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p(us,k, ut,k, θ∗s,k = θ∗t,k)

p(θ∗s,k = θ∗t,k)
=

∫
p( us,k, ut,k | θ∗s,k = θ, θ∗t,k = θ )p(θ∗s,k = θ, θ∗t,k = θ) dθ

∫
p(θ∗s,k = θ, θ∗t,k = θ) dθ

(5)

of the parameter h2 is a difficult task addressed in [10], [19]. The similarity is expressed by a weighted

Euclidean distance over the two windows. This is well-adapted for additive WGN models.

The Probabilistic Patch-Based (PPB) filter aims to define a suitable patch-based weight to generalize

the Euclidean distance weights used in the NL means algorithm. The idea is to generalize the NL means

algorithm to non additive WGN models. According to the previous comments, weights can be seen as

a membership value over the fuzzy set version of Sθ∗

s
= {t|θ∗t = θ∗s}. In a probabilistic patch-based

approach, we express this weight by the probability, given the noisy image u, that two patches ∆s

and ∆t have same parameters. That holds by assuming pixels with similar neighborhoods come from

same distribution, which is the NL means assumption. The patch-based similarity probability involves

the following weight definition

w(s, t)(PPB) := λ p(θ∗∆s
= θ∗∆t

|u)1/h2

(4)

where θ∗∆s
and θ∗∆t

denote respectively the parameters sub-images in the windows ∆s and ∆t, and λ > 0

and h > 0 are real values. The λ value is an arbitrary proportionality value which does not affect the

WMLE. The h parameter comes from the NL means algorithm and acts on the width of the fuzzy set

to control the amount of filtering. Kervrann et al. explain the parameter h probably counterbalances the

invalidity of the patch independency assumption [10]. Indeed, we assume the similarity probability can

be decomposed as follow
∏

k p(θ∗s,k = θ∗t,k|us,k, ut,k). In a Bayesian framework, without knowledge

on p(θ∗s,k = θ∗p,k) and p(us,k, ut,k), it is natural to consider the probability p(θ∗s,k = θ∗t,k | us,k, ut,k)

proportional to the likelihood p(us,k, ut,k | θ∗s,k = θ∗t,k). According to Equation 5 (at the top of the

page) and under the independent assumption on us,k and ut,k, the similarity probability is given by

1

Z

∫

D
p(us,k|θ∗s,k = θ)p(ut,k|θ∗t,k = θ) dθ (6)

where Z is a normalization constant equal to
∫

p(θ∗s,k = θ, θ∗t,k = θ) dθ, D is the definition domain

of the parameter θ, and p(θ∗s,k = θ, θ∗t,k = θ) is assumed to be independent of s, t, k and θ.
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C. Related Works and Motivations

The PPB filter is different from the solution in [9] proposed for noise reduction in magnetic resonance

images. To avoid the Euclidean distance, the authors propose to use a MLE where the similarity is used

to select the suitable pixel values. The MLE is then performed over the most similar sites t with respect

to the ℓ1 distance between u∆s
and u∆t

.

Note that PPB differs also from the Bayesian NL means filter proposed in [10] and used for ultra-

sound speckle reduction in [20]. On the one hand, Bayesian NL means filter minimizes a weighted

mean square error function. WMLE seems to be better suited to cope with non-additive WGN, since

the loss function considers the noise property. In the particular case of additive WGN model, the same

estimation is obtained by weighted mean square error minimization, which is the weighted averaging

proposed in Equation 2. On the other hand, to cope with non additive WGN, the Euclidean based

weights are substituted by the conditional probability p
(

u∆s
|θ∗∆s

= u∆t

)

. This approach assumes that

u∆t
provides a good approximation on the true parameter θ∗∆t

. We suggest that the similarity probability

p(θ∗∆s
= θ∗∆t

|u) is more suitable since it does not make such a strong assumption. In the case of additive

WGN, this conditional probability and our similarity probability involve the same weight definition. Since

the Bayesian NL means filter makes this strong assumption, the authors proposed a two steps algorithm

to refined the weights. Based on a similar idea, we describe in the next section, an iterative procedure

to enhance the estimation.

III. ITERATIVE DENOISING

This section presents the iterative procedure used to refine the patch-based weights estimation thanks

to two terms. The first term is the data fidelity used in the previous section and the second term is based

on the comparison between patches from the image obtained at the previous iteration.

A. Refining the Weights with Denoised Patches

The Probabilistic Patch-Based (PPB) filter is a WMLE filter where the weights are defined by the

similarity probability (see Equation 4). The idea is to refine iteratively this probability by refining an

estimation of the image parameter. Let us consider a given previous estimation θ̂i−1 of θ∗. Then the

patch-based similarity probability involves this new weight definition:

w(s, t)(it. PPB) := λ p(θ∗∆s
= θ∗∆t

|u, θ̂i−1)1/h2

.
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With the same considerations as above, the similarity probability can be decomposed in term of the prob-

abilities p(θ∗s,k = θ∗t,k | us,k, ut,k, θ̂i−1). In a Bayesian framework, without knowledge on p(us,k, ut,k),

and assuming the event us,k, ut,k | θ∗s,k = θ∗t,k is independent of θ̂i−1, the following relation holds

p(θ∗s,k = θ∗t,k | us,k, ut,k, θ̂
i−1) ∝

p(us,k, ut,k | θ∗s,k = θ∗t,k)
︸ ︷︷ ︸

likelihood

× p(θ∗s,k = θ∗t,k | θ̂i−1)
︸ ︷︷ ︸

a priori

.

The likelihood term corresponds to the data fidelity and was defined in the previous section (see Equation

6). The prior term measures the validity of θ∗s,k = θ∗t,k given the estimation θ̂i−1. We assume the equality

θ∗s,k = θ∗t,k is more likely to hold as the distributions θ̂i−1
s,k and θ̂i−1

t,k get closer. The prior term is a

function of a similarity between these two data distributions. We suggest to use a symmetrical version

of the Kullback-Leibler divergence over an exponential decay function

exp



− 1

T

∫

D

(

p(t|θ̂i−1
s,k ) − p(t|θ̂i−1

t,k )
)

log
p(t|θ̂i−1

s,k )

p(t|θ̂i−1
t,k )

dt





where D is the domain of pixel values and T > 0 is a positive real value. That corresponds to the

Kullback-Leibler divergence based kernel used in [21]. The parameters T and h2 act as dual parameters

to balance the trade-off between the noise reduction and the estimation fidelity.

The refining procedure can be performed iteratively. Indeed, at iteration i − 1, the whole estimations

θ̂s provide the estimation θ̂i−1 used at iteration i. Note that θ̂i−1 is updated once θ̂s is evaluated for all

sites s ∈ Ω. That is called a synchronous local iterative method [22]. This kind of algorithms converges

to a local optimum depending on the initial parameter θ̂1. For best performances, the initial estimation

has to be a high signal to noise ratio image which preserves the thin structures existing of the noisy

image. A way to construct such an initialization is given in Section IV.

B. Related Works

In PPB, the weights are defined by two terms. The first term, the data fidelity, depends on the original

noisy image and considers its pixel values as a realization of the noise generative model. The second

term is calculated from the previous estimation and considers its pixel values as the “true” parameters

of the noise generative model. This idea is different from the iterative NL means versions defined in

[23] and the gradient descent proposed in [11], where only previous parameter estimations are used for

similarity criteria. Our approach seems to converge to a solution closer to the noise-free image since the

solution remains guided by the noisy image over the different iterations. The same idea is explored in
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[12], [13] where the total variation is eventually minimized iteratively on a non-local graph defined by

the original noisy image and the previous estimation.

The iterative PPB is related to the Expectation-Maximization (EM) procedure [2]. As in PPB, the EM

algorithm is a two steps iterative algorithm which converges to a local optimum depending on the initial

estimation. The first step (E-Step) evaluates a complete-data likelihood expectation by computing sufficient

parameters using a previous estimation. The second step (M-Step) maximizes this likelihood. In our filter,

the first step requires to evaluate the weighted likelihood by computing the similarity probability using the

previous estimation θ̂i−1. The second step evaluates the WMLE to produce the new refined estimation. As

in the EM procedure, PPB considers also the previous estimation as “true” parameters. According to our

experiments, this consideration involves the model stability over the different iterations and provides the

convergence of our method. The algorithm differs from the EM procedure in the definition of the objective

function since our function is not related to a complete-data likelihood expectation. Our latent variable

is the set of the indicator functions δSθ∗
s

(t). Under the NL means assumption, a model of δSθ∗
s

(t) = 1

is provided by the similarity of the neighborhoods of s and t. However, these neighborhoods cannot be

used to create a model of δSθ∗
s

(t) = 0 (having different neighborhoods does not imply following different

distributions). Then, our objective function considers only the event δSθ∗
s

(t) = 1, whereas a complete-

data likelihood expectation would be done over all possible values of the latent variable: δSθ∗
s

(t) = 1

and δSθ∗
s

(t) = 0. Finally, our latent variable definition makes the algorithm locally defined for all sites s.

Then, PPB is a synchronous local iterative method while an EM algorithm would try to resolve iteratively

the problem directly on the global image.

IV. ALGORITHM DERIVATION IN THE CASES OF GAUSSIAN AND SPECKLE NOISES

This section presents the derived algorithms from the iterative Probabilistic Patch-Based (PPB) filter

for two different noise distributions. On the one hand, we will consider images corrupted by an additive

White Gaussian Noise (WGN). On the other hand, we will consider multiplicative speckle noise present

in SAR images. Finally, the setting of the parameters and the complexity are discussed.

Under the additive WGN model assumption, the pixel values Is are independent and identically

distributed according to the normal distribution N (µ∗
s, σ

2) where µ∗ is the underlying noise-free image

and σ2 the noise variance. Then, it is straightforward to show from the first order optimality condition

that

µ̂(WMLE)
s =

∑

t w(s, t)It
∑

t w(s, t)
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must hold to maximize the WMLE defined in Equation 1, and according to Appendix A:

p(Is,k, It,k|µ∗
s,k = µ∗

t,k) =
1

2
√

πσ
exp

(

−|Is,k − It,k|2
4σ2

)

,

p(µ∗
s,k = µ∗

t,k | µ̂i−1) = exp

(

− 1

T

|µ̂i−1
s,k − µ̂i−1

t,k |2
σ2

)

.

Finally the weights w(s, t)(it. PPB) at iteration i can be defined as

exp

[

− 1

h2

∑

k

(

|Is,k − It,k|2 +
1

T
|µ̂i−1

s,k − µ̂i−1
t,k |2

)]

.

In a non-iterative version, T → +∞, the filter is exactly the NL means filter. Then PPB can be considered
as an iterative generalization of the NL means filter. Note that the Gaussian kernel, defined by the weights

αk in Equation 3, is not use in PPB, but can be introduced easily in the model.

In SAR images, the information sought (the reflectivity) is generally considered to be corrupted by

the multiplicative Goodman’s speckle noise model [24]. Thus, the pixel amplitudes As are modeled as

independent and identically distributed according to the following Rayleigh distribution

p(As|R∗
s) =

As

R∗
s

exp

(

−A2
s

R∗
s

)

whereR∗ is the underlying reflectivity image. Then, from the first order optimality condition, the following

estimation

R̂(WMLE)
s =

∑

t w(s, t)A2
t

∑

t w(s, t)
,

must hold to maximize the WMLE defined in Equation 1, and according to Appendix B:

p(As,k, At,k|R∗
s,k = R∗

t,k) =
4As,kAt,k

A2
s,k + A2

t,k

,

p(R∗
s,k = R∗

t,k | R̂i−1) = exp



− 1

T

|R̂i−1
s,k − R̂i−1

t,k |2

R̂i−1
s,k R̂i−1

t,k



 .

Finally the weights w(s, t)(it. PPB) at iteration i can be defined as

exp

[

− 1

h2

∑

k

(

log

(

As,k

At,k
+

At,k

As,k

)

+
1

T

|R̂i−1
s,k − R̂i−1

t,k |2

R̂i−1
s,k R̂i−1

t,k







 .

In a non-iterative version, T → +∞, the filter is based on the same scheme as the NL means filter by
substituting the Euclidean distance with a similarity criterion adapted to speckle noise and given by

log

(
A1

A2
+

A2

A1

)

(7)

January 12, 2009



11

where A1 and A2 are two observed amplitude values.

For complexity reasons, the pixels t are restricted to a window Ws centered around s. Then, the

algorithm complexity is given by O(|Ω||W ||∆|) where |Ω|, |W | and |∆| are respectively the image
size, the search window size and the similarity patch size. Several optimizations have been proposed,

as the block-based approach [25], the fast non-local means [26], and the solution implemented here and

proposed by Darbon et al. in [27] with a time complexity given by O(4|Ω||W |). For best performances,
Buades et al. suggest to use a search window of size |W | = 21 × 21 and a similarity window of size

|∆| = 7×7 [1]. Kervrann and Boulanger showed that the size of |W | acts as a bias-variance trade-off on
the estimation [23]. When the window size increases, the variance decreases but the estimation is more

biased because there are more values coming from different distributions. According to this trade-off,

the initial image parameter θ1 is computed by the iterative PPB with a smaller search window size.

Thus, small features will be preserved and noise reduced before proceeding to a stronger denoising in

the following steps.

V. EXPERIMENTS AND RESULTS

A. Qualitative Evaluation of the Denoising Algorithms

This section presents the results obtained on two images. The first image is the 512× 512 Lena image

corrupted by an additive WGN with a standard deviation σ = 40. The second image is a 512×512 SAR

image of the CNES in Toulouse (France) sensed by RAMSES (ONERA) and provided by the French

spatial agency (CNES). This image is assumed to follow the multiplicative Goodman’s Speckle Noise

(GSN) model.

On both images, the non-iterative and the iterative Probabilistic Patch-Based (PPB) filters are applied.

Note that in the case of the non-iterative filter applied on the “Lena” image, our filter provides the same

result as the NL means filter. For all experiments, we use a search window of size |W | = 21× 21 and a

similarity window of size |∆| = 7× 7. In case of the non-iterative procedure, the parameter h2 has been

tuned to 29.0σ2 for additive WGN, and h2 = 2.65 for multiplicative GSN. For the iterative procedure,

the parameters have been set to h2 = 37.2σ2 and T = 0.33 for additive WGN, and h2 = 5.54 and

T = 2.39 for multiplicative GSN

The denoised images are displayed on Figure 1. For reasons of visibility, only 256 × 256 sub-images

are shown here, the full size images are available at http://www.tsi.enst.fr/∼deledall/ppb.php. Note that

the squared root of the estimated reflectivity images are displayed in order to be homogeneous and

comparable to the original amplitude image. The images obtained with the iterative methods seem to be

January 12, 2009



12

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a-c) “Lena” images and (d-f) SAR images of Toulouse c©DGA c©ONERA. (a) Image corrupted by an additive white

Gaussian noise with σ = 40. (b,c) Denoised image obtained respectively with our non-iterative (NL means) and iterative filter

derived for additive white Gaussian noise. (d) SAR image originally corrupted by a multiplicative Goodman’s speckle noise. (e,f)

Denoised image obtained respectively with our non-iterative and iterative filter derived for multiplicative Goodman’s speckle

noise.

well smoothed with a better edge and shape preservation. In the case of SAR images, the bright scatterers

are restored with a high precision (as the three bright lines on the building left side which constitute

relevant targets). Unfortunately, all methods seem to attenuate thin and dark structures as the mouth of

Lena and the two thin streets existing in the SAR image.

B. Analysis of the “Method Noise”

In the case of additive WGN and multiplicative GSN model, the information removed by a filter is

obtained respectively by the difference u − µ̂ and the ratio A/R̂1/2. That is referred in [1] as “method

noise”. An ideal denoising procedure would give a method noise without any structure (i.e., uncorrelated),
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a-c) “Lena” images and (d-f) SAR images of Toulouse c©DGA c©ONERA (a) Image corrupted by an additive white

Gaussian noise with σ = 40. (b,c) “Method noise” obtained respectively with our non-iterative (NL means) and iterative filter

derived for additive white Gaussian noise. (d) SAR Image originally corrupted by a multiplicative Goodman’s speckle noise.

(e,f) “Method noise” obtained respectively with our non-iterative and iterative filter derived for multiplicative Goodman’s speckle

noise. The method noise should ideally correspond to a noise image free of any structure.

and following the noise distribution.

If object structures are present in method noise, that means that the related objects are not well restored

in the denoised image. Figure 2 displays the method noise for the 4 denoised images presented above.

It can be noticed that structures are less present when the iterative approach is used and the noise seems

more decorrelated. The remaining structures correspond actually to the damaged ones in the denoised

images such as the mouth of Lena and the two thin streets existing in the SAR image.

To validate our filter, we also compute numerical statistics over the obtained method noises. In case

of additive WGN, the removed information should be Gaussian distributed with zero mean µ̂ = 0 and

standard deviation σ̂ = 40. For multiplicative GSN, it should be Rayleigh distributed with parameter
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R̂ = 1 and standard deviation
√

1 − π/4 ≈ 0.463. In all cases, the correlation between the method noise

and its one pixel left-translated version is computed and should be close to 0. Table I shows the obtained

statistics for the fourth images. All results are improved by the iterative approach. Moreover, the statistics

are very close to the underlying distribution with a little correlation.

TABLE I

STATISTICS OF THE “METHOD NOISE”

Lena image µ̂ σ̂ Correlation

non-it. PPB (NL means) 0.086 36.88 0.015

it. PPB 0.018 37.06 0.009

SAR image of Toulouse R̂ σ̂ Correlation

non-it. PPB 0.826 0.422 0.045

it. PPB 0.863 0.429 0.027

C. Overview

(a) (b)

Fig. 3. SAR image of Bayard (France). (a) Original image c©DGA c©ONERA. (b) Denoised image obtained by our iterative

filter.

This section presents an overview of different results obtained with PPB on real SAR images. In all

experiments, the algorithm is executed with a search window of size 21 × 21, a similarity window of

size 7 × 7 and the parameters h2 = 5.54 and T = 2.39. Figure 3 and 4 are two SAR acquisitions of

Bayard and Cheminot from Saint-Pol-sur-Mer (France), sensed in 1996 by RAMSES of ONERA. Figure

5 is a SAR acquisition of the CNES in Toulouse (France) sensed also by RAMSES and provided by

the CNES. Figure 6 displays a SAR image of an agriculture region in Lelystadt (Netherlands), sensed
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(a) (b)

Fig. 4. SAR image of Cheminot (France). (a) Original image c©DGA c©ONERA. (b) Denoised image obtained by our iterative

filter.

by ERS-1 with 3-looks (PRI data) and provided by the European Space Agency (ESA). These 4 images

provide a testing set which presents a good diversity: different sensors (RAMSES/ERS), different scenes

(urban/agricultural), different data (mono-look/multi-looks).

(a) (b)

Fig. 5. SAR image of Toulouse (France). (a) Original image c©DGA c©ONERA. (b) Denoised image obtained by our iterative

filter.

On these 4 different images, the speckle effect is strongly reduced. The spatial resolution seems to

be very well preserved: buildings, sidewalks, streets, fields seems to be well restored. Note that for the

3-looks image, we adjust the parameters h2 = 4.41 and T = 0.90 to produce an optimal result. Moreover,

bright scatterers (numerous in urban area) are very well conserved. The fields, streets and buildings shapes

are perfectly restored. Only few thin and dark details are lost during the filtering, such the dirt tracks

between the fields of Lelystadt.
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(a) (b)

Fig. 6. 3-looks SAR image of Lelystadt (France). (a) Original image c©ESA. (b) Denoised image obtained by our iterative

filter.

D. Algorithm Convergence

In practice, the algorithm converges and the solution depends on the initial estimation θ̂1. Figures 7

and 8 show the evolution of the similarity between the successive estimations θ̂t and θ̂t+1 for images

respectively corrupted by additive WGN and multiplicative GSN. According to the above comments, the

similarity is expressed respectively as an Euclidean distance and with the criterion defined in Equation

7 (normalized according to the image size |Ω|). In case of additive WGN corrupted images, the curves

1 2 3 4 5 6 7 8 9
0
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40

 

 

Noisy image

Prefiltered image

Constant image

Noise−free image

Fig. 7. Euclidean distance evolution, in function of the iterations, between two successive estimations of an image corrupted

by additive white Gaussian noise. The evolution is measured for different initial estimations: the noisy image, a constant image,

the noise-free image and our prefiltered estimation procedure (see Section IV).
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converge to 0 whatever the initialization. In case of multiplicative GSN corrupted images, the curves

converge to log(2) whatever the initialization. That means that, after enough iterations, they are no more

change between two successive iterations: the iterative procedure has reached convergence. Moreover,

using a prefiltered image (built as explained in Section IV) seems to accelerate the speed of convergence.

Finally, we can notice that the noise-free image is not necessarily a local optimum. Indeed, when using

the noise-free image as initialization, some changes are applied before reaching convergence.

2 4 6 8 10 12 14

0.7  

0.705

0.71 

0.715

0.72 

0.725

log(2)  

 

Noisy image

Prefiltered image

Constant image

Fig. 8. Evolution of the criterion defined in Equation 7, in function of the iterations, between two successive estimations of

an image corrupted by multiplicative Goodman’s speckle noise. The evolution is measured for different initial estimations: the

noisy image, a constant image and our prefiltered estimation procedure (see Section IV).

VI. CONCLUSION

A new method was proposed for image denoising which can be adapted to different noise distributions.

This method is based on the non local means filter [1] and is related to the iterative Expectation

Maximization procedure [2]. The proposed filter gives promising results for optical images, damaged

by an additive White Gaussian Noise (WGN), as well as for Synthetic Aperture Radar (SAR) images,

damaged by a multiplicative speckle noise. The noise, present in the input images, is perfectly smoothed in

the homogeneous regions and the object contours are very well restored (conservation of the resolution).

Moreover we can consider from our numerical experiments, that the reflectivity in SAR images is very

well recovered, with a good restoration of bright scatterers. A drawback of the filter is the suppression

of thin and dark details in the regularized images. In a future work, the local adaptive window selection,
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presented in [23], will be studied and generalized to recover such thin and dark details in case of non

additive WGN. We have seen that the filter elaboration, based on the statistics of the processed images,

has led to define a suitable similarity criteria for SAR images. This similarity criteria will be studied in

other applications such as displacement estimation.
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APPENDIX A

PROOF OF THE ALGORITHM FOR ADDITIVE WGN

The similarity probability is given by

∫ +∞

−∞

1

2πσ2
exp

(

|I1 − µ|2 + |I2 − µ|2
2σ2

)

dµ

=

∫ +∞

−∞

1

2πσ2
exp

(

|I1 − µ|2 + |µ − I2|2
2σ2

)

dµ

=
1

2
√

πσ
exp

(

−|I1 − I2|2
4σ2

)

according to the convolution of two Gaussian functions.

Now, note the following statement

|t − µ2|2 − |t − µ1|2 = −(µ2
1 − µ2

2) + 2t(µ1 − µ2)

Then, the Kullback-Leibler divergence is given by

∫ +∞

−∞

1√
2πσ

exp

(

−|t − µ1|2
2σ2

)

× |t − µ2|2 − |t − µ1|2
2σ2

dt

= −µ2
1 − µ2

2

2σ2

∫ +∞

−∞

1√
2πσ

exp

(

−|t − µ1|2
2σ2

)

dt

︸ ︷︷ ︸

=1

+
µ1 − µ2

σ2

∫ +∞

−∞

t√
2πσ

exp

(

−|t − µ1|2
2σ2

)

dt

︸ ︷︷ ︸

=µ1

= −µ2
1 − µ2

2

2σ2
+

µ2
1 − µ1µ2

σ2
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Respectively the following holds

∫ +∞

−∞

1√
2πσ

exp

(

−|t − µ2|2
2σ2

)

× |t − µ2|2 − |t − µ1|2
2σ2

dt

= −µ2
1 − µ2

2

2σ2
+

µ1µ2 − µ2
2

σ2

Then, the symmetric Kullback-Leibler divergence is given by

−µ2
1 − µ2

2

2σ2
+

µ2
1 − µ1µ2

σ2
+

µ2
1 − µ2

2

2σ2
− µ1µ2 − µ2

2

σ2

=
µ2

1 − 2µ1µ2 + µ2
2

σ2
=

|µ1 − µ2|2
σ2

APPENDIX B

PROOF OF THE ALGORITHM FOR MULTIPLICATIVE GSN

First, note the following equality

∫
∞

0

A

x2
exp

(

−B

x

)

dx

= A

∫ 0

∞

x2

B2
exp (−x) ×−B

x2
dx

=
A

B

∫
∞

0
exp (−x) dx

︸ ︷︷ ︸

=1

=
A

B

Then, the similarity probability is given by

∫
∞

0

4A1A2

R2
exp

(

−A2
1 + A2

2

R

)

dR =
4A1A2

A2
1 + A2

2

The Kullback-Leibler divergence is given by

∫ +∞

0

2t

R1
exp

(

− t2

R1

)

×
(

log
R2

R1
+

t2

R2
− t2

R1

)

dt

= log
R2

R1

∫ +∞

0

2t

R1
exp

(

− t2

R1

)

dt

︸ ︷︷ ︸

=1

+

(
1

R2
− 1

R1

)∫ +∞

0

2t3

R1
exp

(

− t2

R1

)

dt

︸ ︷︷ ︸

=R1

= log
R2

R1
+

R1

R2
− 1
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Respectively the following holds

∫ +∞

0

2t

R2
exp

(

− t2

R2

)

×
(

log
R2

R1
+

t2

R2
− t2

R1

)

dt

= log
R2

R1
+ 1 − R2

R1

Then, the symmetric Kullback-Leibler divergence is given by

log
R2

R1
+

R1

R2
− 1 − log

R2

R1
− 1 +

R2

R1

=
R1

R2
+

R2

R1
− 2 =

|R1 − R2|2
R1R2
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