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Invariant Texture Indexing Using Topographic Maps

Indexation de Texture et Carte Topographique
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Résumé

Nous présentons une méthode originale pour l’analyse

automatique de textures. Nous associons à une image
de texture des attributs invariants aux transformations

géométriques et radiométriques locales. L’analyse re-

pose sur la carte topographique des images, obtenue
à partir des composantes connexes des ensembles de

niveau. Nous montrons sur plusieurs bases de données

que l’analyse proposée permet de reconnâıtre ou de

classer des images de textures en présence de forts change-
ments de points de vue ou d’illumination, même dans

le cas de textures non-rigides.
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Abstract

This paper introduces a new texture analysis scheme

which is invariant to local geometric and radiometric
changes. The proposed methodology relies on the to-

pographic map of images, obtained from the connected

components of level sets. This morphological tool, pro-
viding a multi-scale and contrast-invariant representa-

tion of images, is shown to be well suited to texture

analysis. We first make use of invariant moments to

extract geometrical information from the topographic
map. This yields features that are invariant to local sim-

ilarities or local affine transformations. These features

are invariant to any local contrast change. We then
relax this invariance by computing additional features

that are invariant to local affine contrast changes and

investigate the resulting analysis scheme by performing
classification and retrieval experiments on three texture

databases. The obtained experimental results outper-

form the current state of the art in locally invariant

texture analysis.

Keywords

Topographic Map, Level Lines, Texture Analysis,

Local Invariance.
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1 Introduction

Texture is widely considered as a fundamental ingre-
dient of the structure of natural images. The analysis

of texture, though, is a long standing and challenging

problem in image processing and computer vision. Yves
Meyer recently coined texture as “a subtle balance be-

tween repetition and innovation” [1]. Indeed, the repeti-

tive nature of texture oriented some of the very early re-

search on automatic texture discrimination toward fre-
quency or autocorrelation analysis, see e.g. [2]. Next, in

order to deal with local transitions as well as with the

“innovation” part of textures, one has favored localized,
Gabor or wavelet-like analysis, see e.g. [3]. The ability

of such mathematical tools to handle multi-scale struc-

tures has made them one of the more popular tool for
analyzing textures. One limitation of such approaches,

however, lies in their difficulty in efficiently representing

the geometrical aspects of textures, such as sharp tran-

sitions and elongated contours. In order to overcome
this difficulty, alternative wavelet-like approaches have

been proposed to enable more efficient representations

of structured textures, see e.g. [4].

The Mathematical Morphology school has long ago

[5,6] proposed a radically different multi-scale analysis
tool for texture, the so-called granulometry. These are

obtained from an image by applying elementary mor-

phological operations with structuring elements of in-
creasing sizes. Because such basic morphological oper-

ations operate on the level sets of images, the resulting

analysis enables a direct handling of the edges and the
shapes contained in textures. In this work, we show

that by using a morphological multi-scale decomposi-

tion of images, the topographic map as introduced by

Caselles et al. [7], we can perform efficient texture anal-
ysis, while being invariant to local radiometric and ge-

ometrical changes.

Indeed, a challenging issue when analyzing texture

is that texture surfaces are usually perceived under un-

known viewing conditions. Except when dealing with
a controlled image acquisition protocol, for instance in

specific industrial applications, texture analysis meth-

ods should comply with some invariance requirements.
The most basic ones are translation, scale and orienta-

tion invariances. It is also desirable to achieve invari-

ance to some contrast changes, in order to deal with
variable lighting conditions. Next, the requirement of

invariance with respect to viewpoint changes for flat

texture yields analyses that are invariant with respect

to affine or projective transforms. Moreover, textures
can live on non-flat surfaces, as it is the case for bark

on a tree or for folded textiles. Such an example is

shown in Figure 1, where two different samples of the

same texture class (plaid) from the UIUC database [8]

are displayed. Several recent approaches to the analy-
sis of such textures have been to extract features that

are local and individually invariant to some geometric

transforms, such as similarity or affine transforms, [9,
10]. In contrast with previously developed approaches

to the problem of invariant 3D texture analysis, such

locally invariant methods do not need any learning of
the deformations [11,12] or explicit modeling [13] of

the 3D surfaces. In this paper, we show that a mor-

phological analysis relying on the topographic map en-

ables retrieval and classification of textures that equal
or outperform the existing locally invariant approaches

on several databases.

Fig. 1 Two samples of the same texture class from the UIUC

database [8]. This texture lies on non-rigid surfaces implying com-
plex deformations between the samples.

1.1 Previous and related work

This section briefly summarizes different directions that

have been explored for the invariant analysis of texture

images. Texture analysis has been a very active research
field over the last four decades, and an exhaustive study

of this field is of course beyond the scope of this pa-

per. Some surveys and comparative studies of existing
methods can be found in [14,15,16,17,18], the last one

being devoted to invariant texture analysis. In what fol-

lows, we first focus on classical approaches and the type

of global invariances they allow. By global invariances,
we mean invariances to global transforms of the image.

We then summarize recent approaches to the analysis

of texture that are invariant under local transforms of
images. We focus on methods that are invariant by de-

sign and do not include in this short discussion methods

that are invariant as the result of a learning process [11,
12] or an explicit modeling of 3D textures surfaces [13].

The use of co-occurrence matrices [19] is still a pop-

ular approach, relying on non-parametric statistics at

the pixel level. Rotation invariance can be achieved
for such methods by using polar coordinate systems,

as detailed in [20]. In a related direction, Pietikäinen

et al. [21,22] propose a rotation invariant local binary
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pattern (joint distribution of gray values on circular

local neighborhoods) to describe texture images. Still
at the pixel level, Kashyap and Khotanzad [23] devel-

oped rotation invariant autoregressive models. Cohen

et al. [24], among others, have introduced rotation in-
variant Gaussian Markov random fields to model tex-

tures. However, the design of scale invariant Markov

random field rapidly implies very involved computa-
tions, see e.g. [25]. Of course, pixel statistics can be

averaged over different neighborhoods and make use of

multi-resolution schemes, but these statistics are cer-

tainly not the easiest way to achieve scale or affine in-
variant analyses of textures.

A second popular and efficient way to analyze tex-
tures relies on filtering. Many works have focused on

different filter bank families, different sub-band decom-

positions, and on the optimization of filters for tex-
ture feature separation, see e.g. [26,17,12]. Many of

these approaches enable translation invariance (by us-

ing over-complete representations), rotation and scale

invariance, by using effective filter designs, see e.g. [27,
28,29,11,30,10]. Some contrast invariance can also be

achieved by normalizing responses to filters.

As already mentioned, an alternative approach to

the analysis of textures has been proposed by the math-

ematical morphology school in the framework of gran-
ulometry. The idea is to characterize an image by the

way it evolves under morphological operations such as

opening or closing when the size of the structuring el-

ements is increased [6,31]. These ideas have been suc-
cessfully applied to the classification of textures, see

e.g. [32,33], as well as the related approach [34], mak-

ing use of stochastic geometry. Several works rely on the
theory of connected operators [35] to compute gran-

ulometry without the need for structuring elements,

see [36,37], thus potentially enabling greater geomet-
rical invariances. However, there are few works showing

the benefit of the geometrical nature of morphological

operators to achieve similarity or affine invariant tex-

ture classification, with the notable exception of [38],
where a shape-size pattern spectra is proposed as a

way to classify images. In particular, it is shown that

this spectra enables rotation-invariant classification of
texture images. In [39], it is proposed to globally use

the Earth Mover’s Distance between topographic maps

to perform scale invariant texture classification. To the
best of our knowledge, no work has proposed the use of

morphological attributes to achieve viewpoint invariant

description of textures. Concerning radiometric invari-

ant analysis of texture, the benefit of using contrast
invariant morphological operators to recognize texture

under various illumination conditions has not yet been

demonstrated. Authors of [40] have developed an illu-

mination invariant morphological scheme to index tex-

tures, but they achieve invariance thanks to histogram
modification techniques and not by using the contrast

invariant properties of morphological analysis.

Fractal geometry has also been used in the descrip-

tion of textures, see e.g. the early work [41]. Such ap-
proaches have also been shown to enable globally in-

variant texture analysis. Recently, Xu et al [42] pro-

posed the use of multifractal spectrum vectors to de-

scribe textures while achieving global invariance under
bi-Lipschitz transforms, a general class of transforms

which includes perspective transforms and smooth tex-

ture surface deformations.

Recently, several works have proposed to use indi-

vidually normalized local features in order to represent
textures while being locally invariant to geometric or

radiometric transforms, see [8,43,44,10]. In [8] and [43],

a set of interest local affine regions are selected to build
a sparse representation of textures relying on affine in-

variant descriptors. Textures are represented thanks to

bag-of-features, a method that has been proved very
efficient to recognize object categories, see e.g. [45]. In

[44], textures are characterized statistically by the full

joint PDF of their local fractal dimension and local

fractal length, and this approach is shown to be dis-
criminative and affine invariant. Very recently, Mellor

et al. [10] have shown that similar local invariances can

be obtained using a filter bank approach. These authors
develop a new family of filters, enabling a texture anal-

ysis that is locally invariant to contrast changes and to

similarities.

1.2 Our Contributions

As explained earlier in the introduction, the goal of this
paper is to introduce a new method for texture analysis

that in spirit is similar to morphological granulometries,

while allowing a high degree of geometrical and radio-

metric invariances. The approach relies on the complete
set of level lines of the image, the so-called topographic

map, introduced by Caselles et al [7]. The shapes (that

is, the interiors of the connected components of level
lines) are the basic elements on which the proposed tex-

ture analysis is performed. We exhibit a set of simple

statistics on these shapes, obtained using classical in-
variant shape moments. Therefore, and because each

shape is individually normalized, the proposed texture

indexing is invariant to local geometrical transforms,

allowing for the recognition of non-rigid textures. Var-
ious experiments of texture classification and retrieval

demonstrate state-of-the-art results among locally in-

variant texture indexing methods, on various databases.
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The paper is organized as follows. First, in Section 2,

we briefly recall the definition and elementary prop-
erties of the topographic map. Next, in Section 3 lo-

cal features based on the topographic map are defined.

In Section 4, the efficiency of these features to classify
or retrieve texture is demonstrated on three databases:

Brodatz’s texture photo album [46], UIUC dataset [8]

and Xu’s database [47]. A short version of this work has
appeared in [48].

2 Topographic map

In this section, we recall the definition of the topo-

graphic map and its main properties. The topographic
map has been suggested as an efficient way to repre-

sent images by Caselles et al. [49,7]. It is made of the

level lines, defined as the connected components of the

topological boundaries of the level sets of the image. As
we shall see, this map inherits a tree structure from the

nesting properties of level sets and is an elegant way to

completely represent the geometric information of an
image while remaining independent of the contrast.

The upper level sets of an image u : Ω 7→ R are

defined as the sets

χλ(u) = {x ∈ Ω; u(x) ≥ λ},

where λ ∈ R. We can define in the same way the lower

level sets χλ(u) of u by inverting the inequality. Remark

that if ϕ is a strictly increasing contrast change, then

χϕ(λ)(ϕ(u)) = χλ(u),

which means that the set of all upper level sets remains
the same under increasing contrast changes. Moreover,

the image is completely described by its upper level sets.

Indeed, u can be reconstructed thanks to the following
formula

u(x) = sup{λ ∈ R; x ∈ χλ(u)}.

Of course, the same property holds for lower level sets.

Now, observe that these upper (lower) level sets con-

stitute a decreasing (increasing) family. Indeed, if λ is
greater than µ, then χλ(u) is included in χµ(u) (and

conversely χλ(u) contains χµ(u)). It follows that the

connected components of upper level sets (respectively
of the lower level sets) are naturally embedded in a tree

structure. Several authors [35,49,50], have proposed to

use these trees of connected components (one for the

upper level sets, one for the lower level sets) as an effi-
cient way to represent and manipulate images, thanks

to their hierarchical structure and their robustness to

local contrast changes.

Now, the notion of level lines (topological bound-

aries of level sets) enables to merge both trees, which
motivates further the use of the topographic map to

represent images. Monasse and Guichard fully exploited

this fact and, drawing on the notion of shape, developed
an efficient way to compute this hierarchical represen-

tation of images [51], called Fast Level Set Transform

(FLST). A shape is defined as a connected component
of an upper or lower level set, whose holes have been

filled. A hole of a set A in an image is defined as a

connected component of the complementary set of A

that does not intersect the border of the image. It is
shown in [51] that the set of shapes of an image has

a tree structure. Under some regularity assumption on

the image, this tree is equivalent to the topographic
map (that is the set of all level lines). For discrete im-

ages, the only technicality needed in order to define

the shapes is that two different notions of connectiv-
ity should be adopted for level sets : 8-connectivity for

upper level sets and 4-connectivity for lower sets (the

opposite convention could of course be adopted). For

more precision and results on the topographic map, we
refer to the recent monograph [52]. For the experiments

performed in this paper, we compute the topographic

maps using the FLST code available in the free process-
ing environment Megawave21. For a recent alternative

to the computation of the topographic map, see [53].

An example of the representation of a synthetic image
by its topographic map is shown in Fig. 2.

I, 0

C, 1

G,1
B, 2

E, 3 F, 4

A, 5

H, 5 A

H I

FE G

DCB

D, 3

Fig. 2 Representation of an image by its topographic map (this

example is taken from [54]). Left: an original digital image, with
gray levels from 0 to 5; Right: representation of the image by
its tree of shapes, where (A, B, . . . , I) denote the corresponding

shapes.

The topographic map has a natural scale-space struc-

ture, where the notion of scale corresponds to the ar-
eas of the shapes [55]. This is of course a first motiva-

tion to investigate its use for texture analysis. More-

over, because it is made of the level lines of the image,

the topographic map permits to study textures at sev-
eral scales without geometric degradation when going

1 http://www.cmla.ens-cachan.fr/Cmla/Megawave/
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(b) (c) (d)

(e) (f) (g)

(a)

Fig. 3 Representation of a texture image by its topographic map. (a) original texture image D41 (of size 640 × 640) taken from

Brodatz’s photo album [46]; (b) all shapes boundaries; (c)-(g) shape boundaries at different scales, respectively for shapes of areas in
[1, 10], in [11, 125], in [126, 625], in [626, 3125], and in [3126, 409600].

from fine to coarse scales. This is actually a very strong

property of this scale-space representation. Contrarily
to approaches using the linear scale space or linear fil-

tering, it allows a faithful account of the geometry at all

scales. Figure 3 illustrates this ability. This figure shows
a needlework texture, in which the smallest scales rep-

resent the fine net of the needlework, while the large

scales capture the boundaries of the flowers that are

represented.

Next, the topographic map is invariant to any in-
creasing contrast change. In fact, it is even invariant to

any local contrast change as defined in [56]. This prop-

erty is of primary interest to define texture analysis
schemes that are robust to illumination changes. Last,

the basic elements of the topographic map are shapes

obtained from connected components of the level sets.
Therefore, it provides a local representation of the im-

age. As we shall see, this locality, combined with the

fact that the topographic map is by nature a geometric

representation of images, enables us to develop analysis
schemes that are invariant to local geometrical distor-

tions.

Now, it remains to show that the set of level lines

contains pertinent information about the structure of
textures. This fact is suggested in the original paper on

the topographic map of images [7], where it is stated

that “no matter how complicated the patterns of the
level lines may be, they reflect the structure of the tex-

ture”. A first attempt at using the topographic map to

classify texture images has been proposed in [39]. In

the context of satellite imaging, scales computed from
contrasted level lines have proven useful to discriminate

between different textured areas [57]. The use of level

lines in the context of texture synthesis has also been

investigated in [58]. In the remaining of this work, we

show the usefulness of level lines to index textures while
being robust to viewpoints and illumination changes.

3 Invariant Texture Descriptors

The goal of this section is to define texture features

that are both invariant to some geometric changes and

discriminative enough. These features will be obtained
from the shapes of the topographic map and it is there-

fore quite natural to consider the classical invariant

shape moments, whose definition is recalled in this sec-
tion. Observe that such shape moments are already

used for image registration in [59] and texture recog-

nition in [39]. However, it is well known that these mo-

ments rapidly loose robustness as their order increases,
so that only a small number of these can be used to ana-

lyze real world textures. In order to enrich the proposed

analysis, we take into account multi-scale shape depen-
dencies on the topographic map. The resulting features

are invariant to any local contrast change. Last, we sug-

gest some contrast information that can be extracted
from the shapes and will allow to improve the discrimi-

native power of the proposed analysis scheme while still

being invariant to local affine contrast changes.

3.1 Marginals of invariant moments

In this section, we first give a short reminder on the in-

variant moments that can be extracted from the inertia
matrix of a shape, focusing on invariances to similarity

and affine transforms. More information on this classi-

cal subject can be found e.g. in [60,61,62,63]. Then, we
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show how this moments can be applied to shapes of the

topographic map in order to perform locally invariant
texture analysis.

3.1.1 Invariant moments reminder

For p, q integer values, the two-dimensional (p+q)th or-

der central moment µpq(s) of a shape s ⊂ R
2 is defined

as

µpq(s) =

∫ ∫

s

(x − x)p(y − y)q dxdy, (1)

where (x, y) is the center of mass of the shape, i.e.

x =
1

µ00(s)

∫ ∫

s

x dxdy, and y =
1

µ00(s)

∫ ∫

s

y dxdy.

(2)

For the sake of simplicity, we will omit the variable s

in the following and write µpq instead of µpq(s). Note

that µ00 is the area of the shape and that all central
moments µpq are invariant to translations.

In order to achieve invariance to scale changes, it

is well known and easily shown that moments have to
be normalized in the following way

ηpq = µpq/µ
(p+q+2)/2
00 . (3)

As a consequence, any function of the normalized mo-

ments ηpq is invariant to both scale changes and trans-

lations of the shape s. Now, the sensitivity to noise
of these moments quickly increases as their order in-

creases. We observed experimentally that moments of

order bigger than two are not robust enough to faith-
fully account for texture characteristics, and we there-

fore limit the analysis to moments of order smaller than

2. Since η00 = 1 and η01 = η10 = 0, invariant features

are all obtained from the normalized inertia matrix

C =

(

η20 η11

η11 η02

)

. (4)

In order to achieve rotation invariance, only two fea-
tures remain, namely λ1 and λ2, the two eigenvalues of

C, with λ1 ≥ λ2. Observe that using these values boils

down to fit to the shape an ellipse with semi-major axis
2
√

λ1 and semi-minor axis 2
√

λ2. Note also that from

the seven similarity invariants proposed in the seminal

work by Hu [60], the only ones of order two are λ1 +λ2

and (λ1 − λ2)
2. Now, any function of λ1 and λ2 would

also be invariant to similarity. We chose to use

ǫ = λ2/λ1, (5)

and

κ =
1

4π
√

λ1λ2

, (6)

because these invariants have a clearer intuitive mean-

ing and a simpler range than Hu’s moments. The first
one lies between 0 and 1 and describes the elongation

or the flatness of the shape. It can be shown that the

second one also lies between 0 and 1. This invariant can
be seen as a measure of the compactness of the shape,

which reaches its maximum at ellipses. Indeed, κ is a

dimensionless ratio between the area of the shape (1
for a normalized shape) and the area of the best ellipse

fitting the shape. Note that this invariant is more ro-

bust than a measure relying on the boundary of the

shape, such as the isoperimetric ratio 4π
p2 (where p is

the perimeter of the shape). Next, observe that κ (but

not ǫ) is further invariant to affine transforms. In fact,

κ−2 is the first affine invariant of Flusser et al., defined
in [61].

3.1.2 Texture features from second order moments

As a first feature to represent textures, we simply com-

pute the marginals over all shapes of the two features
κ and ǫ. More precisely, for each of these two features,

we compute a 1D-histogram by scanning all the shapes

of the topographic map. The resulting 1D-histograms

are invariant to any local contrast change, even decreas-
ing ones. Now, it is well known that contrast inversion

strongly affects the visual perception. For this reason,

we restrict the invariance to any local increasing con-
trast change [56] by splitting each of the previous 1D-

histograms in two histograms, one for shapes originat-

ing from upper level sets (bright shapes) and one for
shapes originating from lower level sets (dark shapes).

The concatenations of the bright and dark histograms

are called respectively elongation histogram (EH) and

compactness histogram (CpH).
Observe that since moments are individually nor-

malized for each shape, the resulting features are in-

variant to local geometrical changes (similarity for EH
and affinity for CpH). More precisely, applying a differ-

ent geometrical transform on each shape does not af-

fect the overall marginals of κ and ǫ. In particular, this
should allow to recognize texture that have undergone

non-rigid transforms.

3.2 Dependencies in the topographic map

As explained in the previous section, requiring geomet-

rical invariances and robustness restricts the number

of possible invariant moments to two. In order to de-

fine new features from the topographic map without
going into complex geometrical descriptors relying e.g.

on the boundary of shapes, it is natural to take shape

dependencies into account. Indeed, invariant moment
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marginals as defined in the previous section do not re-

flect the relative positions or inclusions between shapes.
Let us illustrate this point by a toy-example. Figure 4

shows two simple synthetic textures and their corre-

sponding topographic maps. These two images share
the same histograms EH and CpH, in spite of their

structural differences.

(a) Texture 1 (b) Texture 2

(c) Topographic map of (a) (d) Topographic map of (b)

Fig. 4 Toy example: two synthetic textures and their corre-
sponding topographic maps. Both images have the same shape

marginals but different tree structures, as shown in (c) and (d).

We claim that the topographic map, because of its

hierarchical structure, enables the extraction of shape
dependency in an easy and intuitive way. In this work,

we focus on children-parents relationships within the

tree, although other relationships could be interesting.
Definition (Ancestor family NM) Let s be a shape

of the image. Let sm be the m-th cascaded ancestor of

s, where m is an integer. That is, s1 is the parent shape
of s, s2 the parent shape of s1, etc. For M ≥ 1, the M th

ancestor family of s is defined as NM = {sm, 1 ≤ m ≤
M}.

Now, it is quite simple to extract affine invariant
information from these ancestor families. Recall that

µ00(s) is the area of the shape s. An affine transforma-

tion AX + b on s changes µ00(s) into det(A)µ00(s). As
a consequence, if we define for any shape s

α(s) =
µ00(s)

〈µ00(s′)〉s′∈NM

, (7)

where 〈·〉s′∈NM is the mean operator on NM , then α is
locally affine invariant, in the sense that for each shape

s, α(s) is only sensitive to transformations applied to its

M direct ancestors. Remark also that 0 < α < 1. Again,

the distribution of α is represented by a 1D-histogram,

split into dark and bright shapes. The corresponding
feature is called scale ratio histogram (SRH).

Remark Other features could be extracted from the

ancestor family, built e.g. from elongation or compact-
ness as defined in the previous section. However for the

purpose of texture indexing, and in particular for the

classification and retrieval tasks to be considered in the

experimental section, we did not find them to be overly
discriminative. These could however be useful for dif-

ferent tasks.

In what follows, we use two sets of texture features.
The first one, called SI, is made of the features that

are invariant to (local) similarity transforms, while the

second one, called AI, is made of the (locally) affine

invariant features. That is,

- SI = CpH+SRH+EH,

- AI = CpH+SRH,

where, as defined before, EH stands for elongation his-
togram, CpH for compactness histogram and SRH for

scale ratio histogram. These are geometric features, in

the sense that they are invariant to any (local) increas-
ing contrast change. We believe that these descriptors

illustrate the usefulness of the topographic map to ana-

lyze texture images, in particular allowing for relatively
easy handling of invariances.

3.3 Contrast information

The previous geometric features are invariant to any

local increasing contrast change, as defined in [7]. This
is a very strong invariance and we are not aware of any

texture analysis scheme having this property. Now, we

observed that this invariance is too strong to efficiently
recognize many texture classes. In this section, we de-

fine contrast features that are invariant to local affine

contrast changes. This is coherent with the contrast in-
variances considered in recent works to which we will

compare our results, such as [8,10,42].

We choose to compute intensity histograms after lo-

cal normalization by mean and variance on a neighbor-
hood. Such photometric normalization approaches are

relatively standard and have been used in local descrip-

tors, see [64,65]. Schaffalitzky et. al [65] enable their
texture descriptors to be invariant to local affine illu-

mination changes by normalizing the intensity of each

point by the mean and standard deviation over a local

adaptive neighborhood (a support region with detected
adaptive scale). We follow a similar path, except that

we rely on the topographic map to define local neigh-

borhoods.
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More precisely, at each pixel x, a normalized grey

level value is computed as

γ(x) =
u(x) − means(x)(u)

√

vars(x)(u)
, (8)

where s(x) is the smallest shape of the topographic
map containing x, means(x)(u) and vars(x)(u) are re-

spectively the mean and the variance of u over s(x).

This results in a contrast histogram (CtH), computed
by scanning all pixels of u. Thanks to the adopted nor-

malization, the resulting feature is invariant to local

affine contrast changes, as the features in [8,10,42].

One particularity of the proposed normalization (8)

is that the normalized value γ(x) at x will generally be
negative for shapes coming from an upper level set, and

positive for shapes coming from a lower level set (this

property is not systematic but very often satisfied on

natural images).

Observe that this last feature, CtH, is not invariant
to local similarity (or affine) transforms. Indeed, con-

trast histograms are computed on a pixel by pixel basis

which breaks the geometrical invariances we add pre-

served so far. Now, we observed that this feature is very
robust to geometrical distortions of the textures, even

in some extreme cases, as will be demonstrated by the

experimental section.

4 Experiments

In this section, we first explain how to compare tex-

ture images using the features introduced in the pre-

vious section. We then investigate the performances of
the resulting comparison scheme by confronting it with

state-of-the-art texture descriptors. More precisely, we

follow the experimental protocols presented in [8] and
reproduced in [10]. These protocols consist of retrieval

and classification tasks. In order to meet the standards

of the current literature in texture indexing, these ex-

periments are performed on three different databases,
namely the classical Brodatz database, the UIUC data-

base [8] and the more recent Xu’s database [47]. The

descriptors introduced in this paper show on these three
databases similar or better results than the descriptors

presented in [8,10,42]. For the sake of completeness, all

the results of our retrieval experiments are available at
the Internet address [66].

The last part of this section is devoted to a dis-
cussion on the real meaning of invariance and on the

trade-off between invariance and discriminative power.

For all experiments of this section, histograms EH,

CpH and SRH are computed over 25 bins for bright

shapes and 25 bins for dark shapes. Histogram CtH is

computed over 50 bins. The value of M used to compute

SRH is set to M = 3.

4.1 Descriptors comparison

Two texture samples u and v can be compared by com-

paring their descriptors, that is by comparing the his-

tograms they are made of. For this purpose, we use

the Jeffrey divergence, a modification of the Kullback-
Leibler (KL) divergence.

Jeffrey Divergence: Let P = (p1, . . . pN ) and Q =
(q1, . . . qN ) be two discrete distributions, the Jeffrey di-

vergence between P and Q is defined as

D(P,Q) =
∑

i

(pilog
pi

mi
+ qilog

qi

mi
) (9)

where mi = pi+qi

2 .

Let us denote by Dk(u, v) the Jeffrey divergence be-
tween the kth histograms of the descriptors of u and v

(in this paper k ∈ {1, . . . 3} if we use the descriptor

AI+CtH and k ∈ {1, . . . 4} if we use SI+CtH). The fi-

nal distance between u and v can be computed as a
weighted sum of the distances Dk(u, v),

D(u, v) =

∑K
k=1 ωkDk(u, v)

∑K
k=1 ωk

(10)

where ωk is the weight assigned to the kth feature. For

the sake of simplicity, in the following experiments the
weights ωk have been chosen as equal. These weights

could have been adapted by learning their respective

discriminative power on a training data set (see e.g. [43]).

4.2 Comparative evaluations

4.2.1 Experimental protocols

As explained before, we reproduce exactly the retrieval
and classification experiments described in the papers

of Lazebnik et al. [8], Mellor et al. [10] and Xu et al. [47].

Recall that the approach of Lazebnik et al. relies
on local descriptors. These descriptors are computed

on a sparse set of affine invariant regions of interest.

This kind of approach is popular in computer vision and
known to be very efficient for object recognition. In the

work of Lazebnik et al., the best results are obtained

with the combination of two region detectors (Harris

and Laplacian) and two local descriptors (spin images
and RIFT descriptors). The corresponding texture de-

scription, which is denoted by (H+L)(S+R), is locally

invariant to affine transformations and locally robust to
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affine contrast changes. The approach of Mellor et al.

relies on histograms of several invariant combinations
of linear filters. This description is locally invariant to

similarities and globally invariant to contrast changes.

Finally, the method developed by Xu et al. is based on a
multifractal description of textures. Their description is

invariant under many viewpoint changes and non-rigid

deformations, as well as local affine contrast changes.
In order to compare the performances of the de-

scriptors we introduced with the best results provided

by these papers, experiments are performed on three

different databases: the Brodatz database, the UIUC
database [8] and Xu’s database [47]. It is worth notic-

ing that the corresponding results should be taken cau-

tiously and not directly compared with other retrieval
or classification experiments which do not follow ex-

actly the same experimental protocols.

The retrieval experiment consists in using one
sample of the database as a query and retrieving the

Nr most similar samples. The average number of cor-

rectly retrieved samples (generally called recall) when

the query spans the whole database is drawn as a func-
tion of Nr.

For the classification experiment, Nt samples are

extracted from each class and used as a training set.
Each remaining sample in the database is then affected

to the class which contains the nearest training sam-

ple. For each value Nt, an average classification rate
is computed by using randomly selected training sets,

in order to eliminate the dependence of the results on

some particular sets.

4.2.2 Databases

The tree different databases used for the comparison

tasks are now briefly described.

– Brodatz Dataset: The Brodatz’s photo album [46]

is a well known benchmark database used to evalu-

ate texture recognition algorithms. Although it lacks

some interclass variations, Lazebnik et al. [8] point
out that this database is a challenging platform for

testing the discriminative power of texture descrip-

tors, thanks to its variety of scales and geometric
patterns. This database contains 111 different tex-

ture images. Following the protocols of [8,10], we

divide each of these images into 9 non overlapping
samples of resolution 215 × 215. As a result, the

complete dataset is composed of 111 texture classes,

each one being represented by 9 samples (all in all,

999 samples).
– UIUC Database: This texture database [8] con-

tains 25 texture classes, each one being composed

of 40 samples of size 640 × 480 (i.e. 1000 samples

altogether). Inside each class, the samples are sub-

ject to drastic viewpoint changes, contrast changes
or even non-rigid deformations.

– Xu’s Database: This database, introduced by Xu et

al [47] in order to test globally projective invariant
features, is composed of 25 different textures classes,

each one being represented by 40 samples (1000

samples altogether). These samples show strong view-
point and scale changes, and significant contrast dif-

ferences. They represent textures of manufactured

objects, textures of plants, floors or walls. The res-

olution of these images is 1280 × 960.

4.2.3 Performances on Brodatz

Figure 5 shows the retrieval and classification results

obtained with the different indexing schemes on the

Brodatz database.

In the retrieval experiment, shown on Figure 5 (a),
the number of retrieved samples Nr takes values from

8 to 50. Since each class contains 9 samples, a per-

fect indexing method should reach an average recall of
100% for Nr = 8. For this number of retrieved samples,

the affine invariant descriptor AI+CtH reaches 77.33%,

while the similarity invariant descriptor SI+CtH reaches

80.44%. These results slightly outperform those of Lazeb-
nik’s affine invariant texture descriptor (H+L)(R+S)

(76.97% recall) and Mellor’s similarity invariant texture

descriptors (77.65% recall). This trend remains valid
when Nr increases. It should be remarked that in order

to obtain such results on Brodatz, Lazebnik et al. add

a shape channel to their description, and lose thereby
their invariance to local affine changes.

Following [8,10], classification rates are estimated

by averaging the results on randomly selected training

sets. When the number of training samples is 3 for each
class, the average classification rate reaches 88.31% for

AI+CtH and 90.66% for SI+CtH. For the same level

of invariance, these results are equivalent to those re-
ported by Lazebnik et al. (88.15%) and Mellor et al.

(89.71% for their similarity invariant descriptor) with

the same protocol.

Now, as observed in [10], some images of the orig-
inal Brodatz database represent the same texture at

different scales. Nevertheless, these images are consid-

ered as different textures by the experimental proto-
col, which penalizes invariant indexing schemes. In the

same way, we should keep in mind that texture sam-

ples are created by cutting each texture of the Brodatz

database into pieces. As a consequence, the resulting
dataset lacks of viewpoint and scale changes. Conse-

quently, a well chosen non-invariant indexing scheme

should naturally provide better results on this database.
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(a) (b)

Fig. 5 Average retrieval (a) and classification (b) performances of different texture indexing schemes on the Brodatz dataset. The

blue curves correspond to the performances of the descriptors SI+CtH and AI+CtH, while the red curves show the performances of [8]
and [10]. The performance of a non-invariant indexing scheme is also shown for the sake of completeness.

In order to check this statement and for the sake of com-

pleteness, we tried to add some non-invariant features

to our invariant descriptors. For this purpose, we added

to the SI+CtH descriptor the histogram of shapes ar-
eas and the histogram of shapes orientations (the ori-

entation being defined as the direction of the princi-

pal eigenvector of the inertia matrix (4)). The corre-
sponding retrieval and classification results are shown

in Figures 5 (a) and (b). Observe that, as it could be

expected, all the results are clearly improved by adding
these features.

4.2.4 Comparisons on UIUC Dataset

Figures 6 (a) and (b) show the retrieval and classifi-
cation results of the AI+CtH and SI+CtH descriptors

on the UIUC database. For the same level of invari-

ance, these results are better than those reported in [8]
and [10].

Let us observe that we were able to obtain better
results than those reported in Figure 6 by weighting the

contribution of each shape in the descriptors by a power

of its area. This trick allows to give more weight to large
shapes than to small ones, and hence to take more into

account the geometrical aspect of textures. Now, using

this trick on the Brodatz database yields a decrease of
performances. Therefore, and since we did not find an

automatic way to tune this weighting, we chose not to

develop this possibility in the present study.

It is also interesting to note that local similarity in-

variance is enough to correctly retrieve texture classes
with strong viewpoint variations. This property is il-

lustrated by Figure 7, which shows the 39 first sam-

ples retrieved by SI+CtH when the query is the sample

T15 01. This descriptor retrieves 38 samples of the class

perfectly, despite the strong viewpoint changes between

different samples. This is due both to the fact that three

out of four features of SI+CtH are locally affine invari-
ant, as well as to the fact that, as demonstrated by the

experiments in Mellor et al., invariance to local sim-

ilarity already enables a good handling of viewpoints
changes. In fact, local similarity invariance yields better

results than local affinity invariance on this database,

as will be further discussed in Section 4.3.2.

Another specific retrieval result is shown on Figure 8
for the texture class T25 of the UIUC database. This

class, which represents a plaid under different view-

points, contains many distortions and non-rigid defor-
mations. Nevertheless, the SI+CtH descriptor retrieves

the samples of this class quite well (the average retrieval

rate on the whole class reaches 65.26% for 39 retrieved
samples). It is also worth noting that 6 out of the 8

errors (highlighted in red on Figure 8) come from the

same class T03. The retrieval of these samples is false

but consistent. An example of a texture yielding a bad
retrieval rate is shown in Figure 9. The corresponding

texture class exhibits both blur and a very strong vari-

ability.

For classification of the UIUC database, the descrip-

tors AI+CtH and SI+CtH also show better performances

than the methods of Lazebnik et al. [8] and Mellor et
al. [10]. More precisely, the classification rate reached

by AI+CtH is 66.56% and the one reached by SI+CtH

is 70.69% when only one sample is used. These num-

bers should be compared to the rates of 62.15% and
67.10% achieved respectively in [8] and [10]. An inter-

esting point is that the performances of our descrip-

tors decrease on texture classes containing blur. The
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(a) (b)

Fig. 6 Average retrieval (a) and classification (b) performances of different texture indexing schemes on the UIUC database. The

blue curves correspond to the performances of the descriptors SI+CtH and AI+CtH, while the red curves show the performances of [8]
and [10].

Fig. 7 One of the best retrieval results on the UIUC database, obtained on the texture class T15 using the SI+CtH descriptor. The

query image is in first position and the 39 most similar samples follow, ordered according to their matching scores. Retrieval results
for all texture samples are available at the address [66].

descriptors provided in the work of Lazebnik et al. [8]

appear to be more robust to blur and perform better

on these specific classes. This is probably due to the
use of the linear scale space in the process of keypoints

extraction.

4.2.5 Comparisons on Xu’s Dataset

Using the same strategy as before, Figure 10 shows the

retrieval and classification performances of the descrip-

tors AI+CtH and SI+CtH, along with the results ob-

tained by the method of Xu [42], as well as those ob-
tained on this database with the method of Lazebnik [8]

as reported in [42]. Observe that our indexing scheme

is particularly well adapted to this database. Indeed,
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Fig. 8 Retrieval result obtained on the texture class T25 of the UIUC database with the descriptor SI+CtH. The query image is in

first position and the 39 most similar samples follow, ordered according to their matching scores. Retrieval errors are indicated in red.
Retrieval results for all texture samples are available at the address [66].

Fig. 9 A “bad” retrieval result obtained on the UIUC database with the descriptor SI+CtH. The query image is in first position

and the 39 most similar samples follow, ordered according to their matching scores. This result corresponds to the class T19. The
corresponding texture class exhibits both blur and a very strong variability. Observe also that one half of the retrieval errors (indicated
in red) are from the texture class T17, which at some scales looks similar to the class T19.
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(a) (b)

Fig. 10 Average retrieval (a) and classification (b) performances of different texture indexing schemes on Xu’s database [47]. The blue
curves correspond to the performances of the descriptors SI+CtH and AI+CtH, while the red curves show the performances of [47]
on this database, as well as those using the method from [8] as reported by [47].

the curves of Figure 10 show that both SI+CtH and

AI+CtH descriptors perform significantly better than

other methods. This may be due to the fact that this

representation relies on geometry and is thereby well
adapted to highly resolved and structured textures. Fig-

ure 11 shows two specific retrieval results, an almost

perfect result on a texture made of apple stacks, as well
as a result on a texture made of bamboos, for which the

retrieval rate is roughly the one we get on the whole

database. The AI+CtH and SI+CtH descriptors deal
quite well with large scale and illumination changes on

the fruit texture. Concerning the bamboos texture, one

observes that textures RT21 and RT20 (corn leaves) are

visually very similar and relatively hard to discriminate.

Two conclusions arise after the comparison of the

descriptors proposed in this paper with the approaches

of [8,10,42] on three different texture databases. First,
both AI+CtH and SI+CtH are efficient for texture re-

trieval and classification. These descriptors show robust

and consistent results on all three datasets, outperform-

ing state of the art approaches. Second, similarity in-
variant descriptors always perform better than affine

invariant descriptors on all three databases. This as-

pect will be discussed in the last part of the section.

It is also worth noting that the texture features

that we introduced are relatively compact in size. More

precisely, each texture sample is represented by 4 his-
tograms of 50 bins each, i.e. 200 values altogether. This

size is comparable to that of Xu’s descriptors [42], which

use 78 values for each texture sample. In comparison,

Lazebnik et al. [8] use between 1200 and 4000 values for
each sample (40 clusters of 32 or 100-dimensional de-

scriptors), while Mellor et al. [10] represent each sample

by a histogram of 4096 bins.

4.3 On invariance and discriminative power

4.3.1 Invariance to resolution changes

It was shown in section 3 that descriptors SI and AI
are invariant to, respectively, local similarities and local

affine transforms. In particular, the invariance to scale

changes was ensured by the use of normalized moments
computed on the topographic map, which do not change

under a perfect, theoretical scale change. However, in

practice, scale changes on images often imply resolu-
tion changes. These changes can affect texture indexing

methods, as investigated in [67] Such transformations

involve blur, which affects the topographic map of im-

ages. In order to check the robustness of the descriptors
to such changes, we set up the following experiment.

Starting from 20 highly resolved texture images (see

Figure 12), we build a database of 20 texture classes.
In each class, the samples are generated by zooming

each original texture image by a factor t, using bilin-

ear interpolation. Here t takes its values among T as
follows,

T = {0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9}.
As a consequence, the whole database contains 20

classes of 16 samples, i.e. 320 texture samples. The size
of the original images being 3072 × 2040, the smallest

image size is 384 × 255.

Figure 13 shows the histograms SRH, CpH, EH and

CtH of the 15-th texture shown in Figure 12 (peb-
ble beach) for different zoom factors t. Observe that

the curves coincide as long as the zoom factor remains

larger than 0.5 (blue curves). When this factor decreases,
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(a)

(b)

Fig. 11 Two retrieval results, respectively on (a) class RT9 and (b) class RT21 of Xu’s database, using the descriptor SI+CtH.

The query image is in first position and the 39 most similar samples are ordered according to their matching scores. Both examples
correspond to non-planar textures. Observe that all errors for the class RT21 (bamboos) come from the class RT20 (corn leaves), which
is visually quite similar to RT21. Retrieval results for all texture samples are available at the address [66].
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Fig. 12 Set of 3072 × 2040 texture images used to compute a multiresolution database. For each image, 15 sam-

ples are created by sub-sampling the original image with a zoom factor t taking its value in the set T =
{0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9}.

the histograms move away from the original ones (for

t = 1) but remain close to it. This proves empirically the

robustness of these features to real resolution changes
with a zoom factor larger than .125.

In order to test the discriminative power of these

features within the framework of resolution changes, we

perform a simple retrieval experiment on this multires-

olution database. For each zoom value t in T , and each
texture class i, let M i

t be the subset of the class made of

the images having a resolution larger than t. A sample

of resolution t and class i being given, its retrieval rate
is defined as the proportion of well retrieved samples in

M i
t . As usual, the final retrieval rate r(t) is the mean of

the retrieval rates over all samples of resolution t. Fig-
ure 14 shows the curves of r(t) when t varies from 0.125

to 1 and when using different texture descriptors. Ob-

serve that up to a scale factor of 4, the retrieval results

are perfect for SI+CtH.

4.3.2 Local invariance vs discriminative power

Following the experiments of section 4.2, the question

of the level of invariance required to index a particu-
lar database arises naturally. We saw on Brodatz that

removing invariance to scale and orientation greatly im-

proved the results, which seems to be coherent with the

fact that this database does not present many geometric
distortions. Of course, the best level of invariance de-

pends on the database. On UIUC and Xu’s databases,

all descriptors invariant to local similarity changes show

Fig. 14 Average retrieval performances of the descriptors
SI+CtH and AI+CtH on the multiresolution database presented

in section 4.3.1.

significantly better results than locally affine invariant

descriptors, which confirms the results presented in [10].

Moreover, we observe that the advantage of similar-
ity invariance on affine invariance remains true if we

restrict ourselves to textures containing strong distor-

tions. This can be surprising since these two databases
contain classes with strong non-rigid deformations. We

could theoretically expect that local affine invariance,

or even local projective invariance would be needed to

index such classes correctly (recall that Xu’s database,
for instance, has been built on purpose to test projec-

tive invariant descriptors). The fact that features that

are only invariant to local similarities show the best re-
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(a) (b)

(c) (d)

Fig. 13 Histograms (a) SRH, (b) EH, (c) CpH and (d) CtH of the pebble beach texture, the 15th texture image shown in Fig. 12,
for different zoom factors t.

sults despite these variations can only be explained by

a better discriminative power. In other words, there is
a natural trade-off between the level of invariance of a

texture description and the discriminative power of this

description.

Observe that the question of the best level of invari-

ance needed for indexing is also addressed in [43,68],
where learning is used to estimate the optimal weights

of the different descriptors.

These remarks also lead to question the need for fur-
ther invariance in texture indexing. The previous obser-

vations suggest that achieving invariance to local sim-

ilarities may be enough to account for viewpoint vari-
ations or non-rigid deformations. Furthermore, to the

best of our knowledge, there exists no texture database

in the literature on which complete local affine invari-

ance is needed (in the sense that it yields better results
than weaker invariances). Without such a database, it

seems vain to try to develop features with more sophis-

ticated invariances.

5 Conclusion

In this paper, it is shown that the topographic map is
an efficient and intuitive tool to analyze texture images.

Geometrical features are computed from the level sets

of images, enabling state-of-the-art retrieval and clas-
sification results on challenging databases. In particu-

lar, this shows that morphological, granulometry-like

indexing methods can deal with complex, potentially
highly resolved texture images, even in the case of non-

rigid transforms. To the best of our knowledge, such

invariant analysis were only reported in the literature

using wavelet-like features, local descriptors or pixel-
based features.

This work opens several perspectives. First, the hi-

erarchical structure of the topographic map is only par-

tially accounted for in the present work. It is of interest
to further investigate the descriptive power of statistics

on the tree of level lines, making use of specific neigh-

borhoods and higher dependencies in the tree, possibly

using probabilistic graphical models. One difficulty is to
achieve this while preserving radiometric and geomet-

ric invariances. Next, and going beyond local contrast

invariances, one could study the behavior of level line
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statistics under illumination changes in greater details.

We show in this paper that lines statistics yield efficient
retrieval results on databases with varying illumination

conditions. The next step could be either to explicitly

model level lines variations or to investigate the ability
of the topographic map to learn the effects of illumi-

nation changes using databases such as CUReT [69].

Next, the topographic map has a scale-space structure
in which no regularization of the geometry is involved.

This could allow for spatially accurate boundaries in the

context of texture segmentation. Other possible appli-

cations of the proposed framework include the registra-
tion of non-rigid objects, shape from texture or material

recognition. Another possible extension is the design of

locally invariant morphological filters, that could be de-
signed by pruning the topographic map depending on

features values.
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