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Regularisation conjointe de la phase et de
l’amplitude en interf́eroḿetrie radar : Applicatioǹa

la reconstruction 3D
Loı̈c Denis, Florence Tupin, Jérôme Darbon and Marc Sigelle

Abstract

Les données radar interférométriques souffrent d’un très fort bruit et leur régularisation est souvent un pré-requis à leur
exploitation. Indépendemment du problème de déroulement de phase, le débruitage de la phase interférométriqueest un problème
difficile en raison de la présence d’ombres et de discontinuités.

Dans cet article, nous proposons de filtrer conjointement laphase et l’amplitude des données radar. Le terme de régularisation
est exprimé par la minimisation de la variation totale et peut combiner différentes informations (données de phase,données en
amplitude, données optiques).

Tout d’abord, un algorithme rapide d’optimisation approchée pour les données vectorielles est brièvement présenté. Ensuite,
deux applications sont décrites. La première est une application directe de cet algorithme pour la reconstruction 3Den zones
urbaines avec des données radar à très haute résolution. La seconde application est l’adaptation de ce cadre à la fusion entre
données radar et optique. Des résultats sur des images aériennes sont présentés.
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Joint Regularization of Phase and Amplitude of
InSAR Data: Application to 3D reconstruction

Loı̈c Denis, Florence Tupin, Jérôme Darbon and Marc Sigelle

Abstract—Interferometric SAR images suffer from a strong
noise and their regularization is often a prerequisite for successful
use of their information. Independently of the unwrapping
problem, interferometric phase denoising is a difficult task due to
shadows and discontinuities. In this paper, we propose to jointly
filter phase and amplitude data in a Markovian framework.
The regularization term is expressed by the minimization of the
total variation and may combine different information (phase,
amplitude, optical data). First, a fast and approximate optimiza-
tion algorithm for vectorial data is briefly presented. Then two
applications are described. The first one is a direct application
of this algorithm for 3D reconstruction in urban areas with Very
High Resolution (VHR) images. The second one is an adaptation
of this framework to the fusion of SAR and optical data. Results
on aerial SAR images are presented.

I. INTRODUCTION

THE two previous years have seen a new generation
of SAR sensors (TerraSAR-X [33], ALOS, CSK [26],

RadarSat-2) with increased resolution and smaller revisit time
thanks to constellation. Although very popular for their all-
weather and all-time capabilities and their polarimetric and
interferometric potential, SAR data remain difficult to use
and processing tools are still necessary to fully benefit from
them. In this paper, we propose a new filtering tool for
interferometric SAR data and investigate its application for
3D reconstruction with or without the help of an additional
optical image.

Since the seminal work of Geman and Geman [15], Marko-
vian approaches have proved to be very efficient tools in
image processing. By introducing contextual relationship, they
are able to retrieve a fundamental property of images which
is the spatial coherence. These methods have been widely
applied in different domains: medical imaging, robotic, remote
sensing,. . . In the remote sensing area, they have proven to be
efficient for a very wide range of applications : classification
[21] [35] [37] [3]; denoising [36] [45] [20]; 3D reconstruction
[43] ; change detection [29]. Theses approaches are based
on the minimization of an energy which is composed of
two terms: a first term representing the link between the
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restored field and the observed data (“likelihood term” from
a probabilistic view point); and a second regularization term
which represents the prior knowledge on the solution. The
contextual information is usually introduced in this second
term by pairwise interaction between pixels. Depending on the
likelihood model and regularization potentials used to define
these interactions, the global energy may be non convex and
therefore difficult to minimize. This difficulty has led to many
works. The first solution used in [15] is the famous Simu-
lated Annealing. Although having good theoretical properties
of convergence, this stochastic algorithm is computationally
heavy. A much faster deterministic approach, the Iterated
Conditional Mode [4], is thus widely used despite the lack of
guarantee on the global optimality of the found solution. More
recently, new optimization approaches have been developed
based on the search of minimum cuts in a well chosen graph
[7]. This is for instance the optimization technique used in
[21] or [29] for remote sensing applications. The interest for
such efficient approaches is very important. Indeed, they make
it possible to find global optimum for certain classes of energy
[18] [11].

Using such approaches (Markovian modeling and graph-cut
optimization), this paper is dedicated to interferometric SAR
data regularization. Many papers have already been devoted
to the filtering of SAR images ( [25] and [40] are detailed
reviews of the different filtering approaches which have been
proposed). Similarly, there have been many works dedicated
to the problem of interferometric phase filtering. This filtering
can be done as a preliminary step to phase unwrapping as in
[19] [42] or incorporated in the unwrapping step [32] [20].
Here, we are interested in the joint filtering of amplitude and
interferometric phase, in the case where no unwrapping step is
necessary. This situation appears when the elevation range is
contained within one fringe. It is the case for aerial data with
very small baseline. Our aim is to investigate the interest of the
joint use of both amplitude and phase data. It is indeed likely
that the edges of one image are also present in the other one.
We propose here to define a Markovian framework exploiting
this property, and to use graph-cut methods to perform the
optimization step.

This paper is divided into 3 parts. In the first section,
we recall the principle of a recent fast and approximate
algorithm [13] for the optimization of Markov Random Fields
(MRF) of vectorial data. Details on computational aspects
and comparison with other optimization approaches can be
found in [13]. In this work, the applicative potential of this
kind of framework is emphasized. The application we are
considering is the joint filtering of interferometric phase and
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amplitude (the amplitude representing here the combination
of the two amplitude images). Two situations are described,
which constitute the main contributions of this paper. The first
one is the joint regularization of phase and amplitude data
and their use for 3D building reconstruction. Two likelihood
models are discussed and associated results are described in
section III. The second application is the adaptation of this
framework to the fusion of optical and interferometric data.
Methodology and results on real data are presented in section
IV.

II. FAST AND APPROXIMATE ALGORITHM FOR TV
MINIMIZATION OF VECTORIAL DATA

A. Problem statement

The problem of joint amplitude and phase filtering can be
seen as an optimization problem involving a vector-valued
field as unknown. Indeed, the amplitude and phase of each
pixel define a vector with two components and we are looking
for a regularized version of this vector at each pixel such that
most edges are co-located (joint prior). The proposed MRF
models will be described in sections III-B, III-C and IV-C.

Considering that we are dealing with vectorial data, this
section briefly recalls the optimization algorithm that will be
used in the two following parts of the paper. A more complete
description of the method together with a comparison with
other optimization approaches may be found in [13]. The
graph construction and optimization steps are described to
constitute a self-consistent paper.

B. MRF framework

It is assumed that a vectorial image u is defined on a
finite discrete lattice S and takes values in a discrete multi-
dimensional integer set1 L = {1, . . . , L}N (where N is the
dimension, i.e., the number of channels per pixel). We denote
by us the vectorial value of the image u at the site s ∈ S.

Given an observed image u, a Bayesian analysis using the
MAP criterion (Maximum A Posteriori) consists of finding a
restored image v that maximizes:

P (v|u) ∝ P (u|v)P (v). (1)

It can be shown under the assumption of Markovianity of v
(with order-2 cliques) and with some independence assumption
on u conditionally to v (P (u|v) = ΠsP (us|vs)) that the
MAP problem is an energy minimization problem:

v̂(MAP ) = arg min
v

E(v|u) , (2)

with (denoting by s and t indexes representing neighbouring
positions of the MRF):

E(v|u) =
∑
s

U(us|vs) + β
∑
(s,t)

ψ(vs,vt) , (3)

U(us|vs) = − logP (us|vs) and ψ is a function modeling
the negative logarithm of the prior chosen for the solution. β

1the number of quantization levels L may be different in each channel. To
simplify the notations we will consider in the following that they are all equal
to L

is a hyper-parameter whose role is to balance the respective
weight of data fidelity U and regularization ψ terms. In this
paper, the ψ functions considered will be convex functions of
the difference vs− vt, as required to apply the combinatorial
optimization algorithm described below.

C. Energy minimization problem

Graph-cut based approaches are very efficient methods for
MRF optimization. For a certain class of energies, exact
optimization can be computed [12], [18], [47], but the size
of the graph to build and store in memory is prohibitive.
Approximate solutions can be provided by algorithms pro-
posed in [7], but for vectorial data, the size of the space to
be explored rapidly becomes prohibitive. We suggest in this
section a fast algorithm which is more suitable when large
or vectorial data are considered, which is the case for remote
sensing applications.

Minimizing a non-convex energy is a difficult task as the
algorithm may fall into a local minimum. Algorithms such as
the Iterated Conditional Modes [4] require a “good” initial-
ization and then perform local changes (i.e., per-pixel changes
based on optimizing the value of pixels one after another) to
reduce the energy. The change of a single pixel is called a
single move. Graph-cut approaches provide a way to explore
a combinatorial set of changes involving simultaneously all
pixels. Following [7], we denote such changes large moves.
Instead of allowing each pixel to either keep its previous value
or change it to a given one (α-expansion), we suggest that each
pixel could either remain unchanged or its value be increased
(or decreased) by a fixed step. Such an approach has been
firstly described independently in [1], [9], [20], [22], [47] and
applied recently with unitary steps in [20]. We however use
these large moves in a case of non-convex data term. The trial
steps are chosen to perform a scaling sampling of the set of
possible pixel values. We express the algorithm in the general
case of vectorial data.

We first describe the set of large moves considered, then
the associated graph construction and the resulting algorithm.

1) Local minimization: In our iterative algorithm we con-
sider at each step all images that lie within a single move from
our current solution v̂(n). We denote the set of those images
by Sd(v̂(n)):

Sd(v̂(n)) = {v / ∀s ∈ S,∃ks ∈ {0, 1},vs = v̂(n)
s +ksd} (4)

is the set of images whose pixel value v̂s is either unchanged
or increased by step d (the setting of d will be explained later).
We define the “best” move v̂(n) 7→ v̂(n+1) as the one that
minimizes the restriction of the energy to the set Sd(v̂(n)):

v̂(n+1) = arg min
v∈Sd(v̂(n)

)

E(v|u). (5)

It is shown in [13] that the local problem of finding the
(best) vectorial field v̂(n+1) located within a single move can
be exactly solved by computing a minimum cut on a graph
(described in next paragraph) for regularization potentials ψ
that are convex and that depend only on the difference vs−vt.
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2) Graph construction: The basic principle of graph-cuts
for image processing consists of transforming a minimization
problem such as equation 3 (MRF maximum a posteriori
estimation) into a minimum cut – maximum flow computation
on a graph. The search for the “best” large move, i.e., the
minimization of the restricted problem 5, can be efficiently
performed with a fast min-cut algorithm on a graph built
according to the general method of Kolmogorov and Zabih
[23]. At iteration n+1 where the step d is given, our problem
corresponds to a binary minimization problem: find the set
of optimal binary variables (ks)s∈S that minimize the MRF
energy

arg min
(ks)s∈S

∑
s

U(us|v̂(n)
s +ksd)+β

∑
(s,t)

ψ(v̂(n)
s +ksd, v̂

(n)
t +ktd).

(6)
Following the graph construction of [23], we build a directed
graph G(V, E) with nonnegative edge weights and two terminal
vertices: the source S and the sink P . The graph structure
and the edge weights are chosen such that any cut2 has a cost3

corresponding to the energy to minimize.

a) Graph topology: We create a vertice for each site s,
all connected respectively to the source and the sink through
two edges with capacity cs,1 (resp. cs,0). Finally, each clique
(s, t) gives rise to an edge with capacity cs,t (fig. 1). These
capacities are decomposed into two components defined in the
following paragraphs (i.e., cs,. = c′s,. + c′′s,.).

Fig. 1. Graph construction for local minimization: the graph has one layer
of nodes (one per pixel) and two terminals (the source S and the sink P).

b) Representing the log-likelihood term: The first term
in equation (6) is represented by the weights:

{
c′s,1 = max(0, U(us|v̂(n)

s + d))− U(us|v̂(n)
s ))

c′s,0 = max(0, U(us|v̂(n)
s )− U(us|v̂(n)

s + d))).
(7)

2a cut is a partition of the vertices into two disjoint sets S and P such that
S ∈ S and P ∈ P

3the cost of a cut is defined as the sum of the capacities of edges going
from partition S to P

c) Representing the log-prior term: To take into account
the second term in equation (6), we add the following weights:

c′′s,1 = β ·max
(

0, ψ(v̂(n)
s + d, v̂(n)

t )− ψ(v̂(n)
s , v̂

(n)
t )
)

c′′s,0 = β ·max
(

0, ψ(v̂(n)
s , v̂

(n)
t )− ψ(v̂(n)

s + d, v̂(n)
t )
)

c′′t,1 = β ·max(0, ψ(v̂(n)
s + d, v̂(n)

t + d)
−ψ(v̂(n)

s + d, v̂(n)
t ))

c′′t,0 = β ·max(0, ψ(v̂(n)
s + d, v̂(n)

t )
−ψ(v̂(n)

s + d, v̂(n)
t + d))

c′′s,t = β · (ψ(v̂(n)
s , v̂

(n)
t + d) + ψ(v̂(n)

s + d, v̂(n)
t )

−ψ(v̂(n)
s , v̂

(n)
t )− ψ(v̂(n)

s + d, v̂(n)
t + d))

(8)
d) Minimum cut computation: Several algorithms have

been proposed to compute the minimum flow on a graph.
We used an algorithm4 by Kolmogorov [6] dedicated to the
specific structure of graphs arising from computer vision
problems. This algorithm typically requires about 100ms to
compute a cut on a graph with 256 × 256 nodes. The actual
running time depends on the amount of regularization and
increases with the value of hyperparameter β of equation 3.
The complexity issues of min-cut computation are discussed
in [6]; the complexity of the vectorial data regularization
technique is described in [13].

3) Approximate global minimization: The minimum cut
computation on the graph built according to the previous para-
graph only solves the sub-problem of finding the best move
among the set Sd(v̂(n)). We now consider solving a sequence
of min-cut problems to approximatively solve our initial multi-
valued minimization problem (i.e., MRF maximum a posteriori
estimation). Our approximate minimization is based on a finite
number of exact binary optimizations.

To accelerate the exploration, a standard way is to use
different scalings of the step d. In one dimension, a scaling
search is performed by looking for the best move with steps
d+
i = L/2i and d−i = −L/2i for i from 1 to the desired

precision (i.e., quantization level), starting from a constant
image with value L

2 . In N dimensions, there are 3N − 1
vectorial steps di to consider for a given step size di:

di ∈ S (di)
def= {0,−di,+di}N/{0, . . . , 0}. (9)

The regularization algorithm for vectorial data initially
proposed in [13] is summarized here:

1: for all s ∈ S do
2: û(0)

s ← {L/2, . . . , L/2}
3: end for
4: n← 0
5: for i = 1 to precision do
6: di ← L/2i

7: for all di ∈ S (di) do
8: v̂(n+1) ← arg minv∈Sd(v̂(n)

)
E(v|u)

9: n← n+ 1
10: end for
11: end for

4The code is freely available at http://www.adastral.ucl.ac.uk/∼vladkolm/
software.html.
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Line 8 represents the exact binary energy minimization ob-
tained by computing a minimum cut on a graph built according
to section II-C2. The performance of the algorithm (speed,
complexity, quality of the optimum) is further studied in [13].

III. APPLICATION TO 3D RECONSTRUCTION WITH INSAR
DATA

In this section, we present an application of the discrete
optimization algorithm just described to the joint filtering of
interferometric phase and amplitude data for 3D reconstruction
purposes [14]. We consider high resolution interferometric
data. In case of a small baseline, for instance single-pass
aerial data where the two antenna are fixed on the plane, the
elevation range is contained within one fringe. The scene may
then contain sharp transitions that must be well preserved (i.e.,
well modeled) in the reconstruction algorithm. We focus in this
paper on such non-wrapped phase data. The general problem
of phase denoising and unwrapping is much more complex,
see paper [20] for a graph-cut based technique that addresses
the unwrapping issue.

We consider in the following two MRF models: an approx-
imate likelihood model with separability and partial convexity
properties useful for efficient minimization, and an exact like-
lihood model leading to a more difficult energy minimization
problem. The models are applied on real data in paragraph
III-D, showing strong noise reduction while preserving edges.

A. Problem statement

Let us denote by z(1) and z(2) the two single look complex
(SLC) images in interferometric configuration. From these
SLC images, one can derive a 2-looks amplitude image e

defined by: ∀s, es =
√

1
2 |z

(1)
s |2 + 1

2 |z
(2)
s |2. By averaging

over a M -samples window centered on site s (sample number
i will be denoted Vs(i) in the following), the interferometric
phase, the coherence, and the multi-look intensities can be
estimated [27], [41]:

Interferometric phase: ϕ, ∀s, ϕs = arg
[

1
M

∑M
i=1 z

(1)
Vs(i) · conj

(
z

(2)
Vs(i)

)]
Multi-look intensities: I(1), ∀s, I(1)

s = 1
M

∑M
i=1

∣∣z(1)
Vs(i)

∣∣2
I(12), ∀s, I(12)

s = 1
M

∣∣∣∑M
i=1 z

(1)
Vs(i) · conj

(
z

(2)
Vs(i)

)∣∣∣
I(2), ∀s, I(2)

s = 1
M

∑M
i=1

∣∣z(2)
Vs(i)

∣∣2
Coherence: ρ, ∀s, ρs = I(12)

s√
I(1)

s

√
I(2)

s

.

The problem of 3D reconstruction from interferometric SAR
data can be viewed as a regularization problem of the random
field ϕ. In urban areas, most height discontinuities (i.e.,
interferometric phase discontinuities) are also accompanied
by amplitude discontinuities in SAR images and conversely.
The amplitude data can therefore provide useful information
to preserve phase differences corresponding to actual height
differences while sufficiently smoothing noise in homogeneous
areas. We propose to perform joint regularization of phase
and amplitude to combine both information sources. The
co-location of edges in each restored image is favored by
a non-separable regularization potential that penalizes only
the largest of the regularized amplitude and phase gradients.
Depending on the noisy input-data considered, two options

are possible: (a) the 2-looks amplitude e and the M−looks
interferometric phase ϕ can be jointly regularized, or, (b) the
M -look intensities I(1), I(12), and I(2), can be regularized
with the corresponding M -look interferometric phase ϕ. The
first option uses an amplitude image e with better resolution
than the M−looks phase image ϕ. As the prior enforces co-
located edges in the regularized amplitude and phase images,
one can therefore hope that regularized phase will benefit
from the resolution of the input amplitude image e. Due
to the difference in the number of looks of e and ϕ, we
use separate likelihood models for each. The corresponding
likelihood model is described in paragraph III-B. With option
(b) it is possible to use a more precise joint-likelihood model
that correctly accounts for the 2π−periodicity of the phase.
We present this model in paragraph III-C.

B. MRF model with approximate and separable likelihood

1) Log-likelihood of the amplitude: Under the classical
model of Goodman [16], the amplitude es of a pixel s follows
a Nakagami distribution depending on the square root of the
reflectivity as and on the number of looks. For a two looks
amplitude image, the negative log-likelihood is given by:

U(es|as) = 2
e2
s

a2
s

+ 4 logas. (10)

2) Log-likelihood of the phase: The M−looks interfer-
ometric phase ϕs distribution can be approximated by a
Gaussian distribution around the “true” phase φs, leading to a
quadratic negative log-likelihood:

U(ϕs|φs) =
(ϕs − φs)2

σ̂2
φs

, (11)

where the standard deviation σ̂φs
at site s is set at the Cramer-

Rao bound σ̂2
φs

= 1−ρ2
s

2Mρ2
s

. This approximation is acceptable
for M at least equal to 6. In low coherence areas (shadows or
smooth surfaces), this Gaussian approximation is less relevant
and a uniform distribution model is preferred: p(ϕs|φs) = 1

2π .
Shadows are therefore detected prior to the regularization, and
the likelihood model is set depending whether a pixel is inside
or outside the shadow regions.

3) Regularization potential: The minimization of total vari-
ation (TV) is a very popular model [8], [10], [28], [30],
[31] since the seminal work of [34]. It corresponds to a
regularization potential ψ defined as the sum of the absolute
difference of neighboring pixels. It has a behavior which
preserves discontinuities (i.e., edges) in the regularized signal,
while being convex. In the case of urban areas, many sharp
discontinuities exist either in the amplitude image or in the
interferometric one, so this model is well adapted.

The proposed method aims at preserving simultaneously
phase and amplitude discontinuities. The phase and amplitude
information are hopefully linked since they reflect the same
scene. Amplitude discontinuities thus usually have the same
location as phase discontinuities and conversely. We propose
in this paper to perform the joint regularization of phase and
amplitude. To combine the discontinuities a disjunctive max
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operator is chosen. The joint prior model is defined by:

ψ(as − at,φs − φt) = max(|as − at|, γ|φs − φt|), (12)

with γ a parameter that can be set to 1, and otherwise accounts
for the relative importance given to the discontinuities of the
phase (γ > 1) or of the amplitude (γ < 1). As requested
by the minimization algorithm, this regularization potential is
convex.

4) Energy minimization problem: The global joint energy
term is then defined as:

E(a,φ|e,ϕ) =
1
βa

∑
s

M [
e2
s

a2
s

+ 2 logas]

+
γ

βφ

∑
s

(ϕs − φs)2

σ̂2
φs

+
∑
(s,t)

max(|as − at|, γ|φs − φt|).

(13)

βa and βφ are some weightings of the likelihood terms intro-
duced in order to balance the data fidelity and regularization
terms.

5) Processing of shadow areas: Due to the specific proper-
ties of shadow areas (random phase implying constant negative
log-likelihood term), they are separately detected and an
adapted regularization term is defined. The regularized fields
a and φ at sites s located inside the detected shadow areas
are governed only by the regularization term. We use the
same specific prior as in [13] inside the shadows to force the
regularization heights to ground level.

C. MRF model with exact joint-likelihood

1) Exact log-likelihood: The joint negative log-likelihood
of the M−looks intensity and interferometric phase at a given
pixel s is parameterized by the “true” amplitude as, phase φs
and coherence ζs as follows [27], [41]:

U(I(1)
s , I(12)

s , I(2)
s ,ϕs|as,φs, ζs) = 4 logas+

I(1)
s + I(2)

s − 2 · I(12)
s · ζs · cos(φs −ϕs)

a2
s(1− ζ

2
s)

. (14)

We used in the following the coherence estimate ρs instead of
the “true” coherence ζs. The potential U then depends only
on the two unknowns as and φs.

2) Regularization potential: We use the same kind of reg-
ularization model as in paragraph III-B3 to preserve the edges
and encourage their co-location in the restored amplitude and
phase images. Two hyper-parameters βa and βφ are introduced
to balance the amount of smoothing in the regularized field:

ψ(as−at,φs−φt) = max(βa|as−at|, βφ|φs−φt|). (15)

3) Energy minimization problem: The global joint energy
term is then defined as:

E(I(1), I(12), I(2),ϕ|a,φ) =∑
s

[
I(1)
s + I(2)

s − 2 · I(12)
s · ζs · cos(φs −ϕs)

a2
s(1− ζ

2
s)

+ 4 logas

]
+
∑
(s,t)

max(βa|as − at|, βφ|φs − φt|).

(16)

This energy is more difficult to minimize than the energy
of the separable likelihood model defined in equation 13
due to the non-convexity with respect to both a and φ
and non-separability of the negative log-likelihood. Figure 2
illustrates the two negative log-likelihood models considered.
Sub-figures 2(a) (respectively 2(b)) correspond to the separable
approximate model (resp. exact joint model) in the case of a
noisy amplitude of low level (as is in the range [0, 25es]).
The non-convexity with respect to the amplitude is clearly
visible in both cases (a) and (b): as the regularized amplitude
increases, the negative log-likelihood U increases in a slower
than linear regime (U(as) ≈ 4 logas for as large with respect
to es and

√
Is ). For a given regularized amplitude as, U

is quadratic with respect to the regularized phase φs in the
approximate case (a), and periodic in the exact model (b). To
illustrate the 2π− periodicity, we displayed U for phase values
φs in the [−2π, 2π] interval, i.e. on two periods of the model.
The sub-figures (c) and (d) display U in the case of a larger
noisy amplitude level (as is in the range [0, 2.5es]) for the
approximate and exact model respectively.

As the considered data does not require phase unwrapping,
we forced the regularized phase φs to be in the [0, 2π] interval
by setting infinite cost to U for φs values outside this interval
in the exact likelihood model. To improve the quality of the
solution of minimization problem (16), we did two passes of
the minimization algorithm: we first decreased the step sizes
d from L to 1 and then re-started with steps of size L to 1.

D. Results

The proposed joint regularization model and the fast and
approximate regularization algorithm have been applied to two
HR RAMSES interferometric images. The sensor parameters
are the following: frequency 9.5 GHz(X-band), incidence
angle 40◦, resolution less than one meter.

The method has been tested on different test areas. One
area corresponds to the Bayard quarter, near Dunkerque in
the North of France, whereas, the other one corresponds to
Toulouse in the South of France.

1) Hyper-parameter setting: The hyper-parameters βa and
βφ of equations 13 and 16 are automatically set using the L-
curve method [17]. This curve is the graphical representation
of the regularization energy term with respect to the likelihood
energy term. The corner of the curve corresponds to a good
trade-off between under-regularization (steep part of the curve,
where the regularization term can be largely improved with
minor likelihood modification) and over-regularization (slowly
varying part of the curve, where the regularization term can
no longer be improved, whatever the likelihood price). This
method is illustrated in the case of the regularization of SAR
amplitude in [13].

2) Joint regularization with approximate likelihood (MRF
model of paragraph III-B): The results are presented in figure
4 for the regularized phase and amplitude and in figure 3 for
a 3D view.

The results are very close to the ones obtained in [39] with
a very different approach. Note that a weaker hypothesis is
made here, since in [39] an assumption of planar surface
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Fig. 2. Negative log-likelihood as a function of the unknown regularized values of the amplitude as and interferometric phase φs, for a given noisy amplitude
(first row: e2s = I

(1)
s = I

(12)
s = I

(2)
s = 102, second row: e2s = I

(1)
s = I

(12)
s = I

(2)
s = 104) and a given noisy interferometric phase ϕs = 0. (a) and (c),

separable and approximate model described in paragraph III-B, equations (10) and (11). (b) and (d), exact joint model given in paragraph III-C, equation (14).
The model illustrated in subfigures (a) and (c) is separable: it is the sum of a quadratic term and the non-convex negative log-likelihood of the amplitude.
The model shown in subfigures (b) and (d) is not separable and is neither convex with respect to the phase, nor with the amplitude. For a given amplitude,
the exact model in (b) and (d) is 2π−periodic.
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Fig. 3. 3D view of the amplitude superimposed on the elevation derived
from the regularized phase.

is done for each region on the optical image. However, a
precise comparison is difficult due to the sensor parameters.
Indeed, the baseline is 0.7m leading to an ambiguity altitude
of 180m and an altimetric precision between 2 and 3 meters.
The accuracy of the height retrieval for the large buildings is
satisfying (a standard deviation of 2.5 m has been computed)
compared to the given altimetric precision.

3) Joint regularization with exact likelihood (MRF model
of paragraph III-C): An InSAR image of Toulouse has been
processed using the approximate and the exact likelihood
models described in paragraphs III-B and III-C. The input
noisy amplitude

√
I(12) and noisy interferometric phase ϕ are

displayed on sub-figures 5(a) and 5(b) respectively. We used
the automatic hyper-parameter estimation procedure based on
the L-curve corner to set βa and βφ for each model. The
regularized amplitude and phase images for the approximate
likelihood model are shown on sub-figures 5(c) and 5(d). On
sub-figures 5(e) and 5(f), we show the regularized amplitude
and phase obtained with the exact likelihood. Contrary to the
results of figure 4 and 5(c)-(d), obtained with the approximate
likelihood model, we did not mask the shadow areas to obtain
sub-figures 5(e)-(f). The regularized phase is however quite
smooth which illustrates the robustness of the exact likelihood
model. One can however note that the regularized amplitude
is less satisfactory when using this exact model: some values
located in low coherence areas are amplified. This can be
understood by considering the maximum likelihood amplitude
value for a given regularized phase φs:

â2 (ML)
s = [I(1)

s +I(2)
s −2·I(12)

s ·ζs ·cos(φs−ϕs)]/[2(1−ζ2
s)].

(17)
If the regularized phase φs differs from the noisy phase ϕs,
then cos(φs−ϕs) will be much smaller than 1. In a region of
low coherence (ζs low), the maximum likelihood value will

then be â2 (ML)
s ' (I(1)

s + I(2)
s )/[2(1− ζ2

s)], corresponding to
an amplification of the 2M−looks amplitude (I(1)

s + I(2)
s )/2

by a factor at least 1/(1 − ζ2
s). For 3D reconstruction appli-

cations, this not an issue. This would however be a drawback
in applications where the exact radiometry is searched.

Moreover, the high non-convexity of the energy to minimize
however raises new questions on the closeness of the minimum
found to the global minimum. We are confronted to a classical
dilemma in MRF models: what is the best compromise achiev-
able between statistical model accuracy and the efficiency of
the associated minimization techniques?

IV. APPLICATION TO 3D RECONSTRUCTION WITH INSAR
AND OPTICAL DATA FUSION

We consider in this section how to include in the InSAR
regularization process some additional information provided
by an optical image. We suppose here that an optical image
of the scene acquired with normal incidence is available. The
aim is to generalize the previous framework of joint amplitude
/ interferometric phase regularization to integrate the optical
information.

A. Problem statement

The first step is the projection of both data in a common
geometry. The projection fuctions depend on the pixel eleva-
tion. In this paper, we propose to use the elevation provided
by the interferometric phase image to project the pixels in
the optical geometry. Unfortunately, after projection, the cloud
of points is irregular. Therefore, a triangulation of this cloud
is computed. We used QuickHull algorithm to compute a
Delaunay triangulation of the points [2]. This triangulation
defines a graph, whose nodes are the projected pixels of the
SAR image and whose edges are given by the Delaunay
triangulation. Since the Markovian framework is applicable
for any graph, the whole framework previously described is
applicable.

The problem is now stated as follows. Given the observed
field u = [e,ϕ] on the graph and the optical data, how to
estimate a regularized version v̂ ? We propose to introduce
the optical information as an external field o. We minimize
on the Delaunay graph the following energy:

E(v|u,o) =
∑
s

U(us|vs,o) + β
∑
(s,t)

ψ(vs,vt|os,ot) ,

(18)
If we consider that the likelihood term does not depend on

the external field o, we can use the same likelihood models
as those defined in section III. We design a regularization
potential that favors edges in the amplitude and SAR images
at the location of the edges of the optical image. The proposed
prior model is described in paragraph IV-C.

The different processing steps of the proposed method are
summarized in figure 6. The main steps, denoted with circled
numbers on the figure, are the following:

The shadows are detected on the radar image.
The height map in the world coordinates is obtained by
projection of all points from the radar image except those
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(a) (b)

(c) (d)
Fig. 4. Original SAR image (on the left amplitude and phase on the right) c©DGA/CNES and their joint regularization (below).
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(a) (b)

(c) (d)

(e) (f)
Fig. 5. Original SAR image (a) amplitude and (b) interferometric phase c©DGA/CNES and their joint regularization with the approximate model (c)-(d) and
exact joint likelihood model (e)-(f). Images are 1000× 1000 pixels and regularization took about 1 minute for the approximate model and 2 minutes and a
half for the exact model (two passes of the scaling sampling).
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Fig. 6. Scheme of the suggested method. The numbers correspond to the algorithm steps referred to in the text.

in shadow areas, using the height directly provided by the
interferometric phase.
The cloud of points of the height map is then triangulated
into a mesh by Delaunay triangulation. This mesh defines
the topology of the graph used in steps and .
To ease the introduction of optical information, the optical
image is regularized prior to graph construction.
A valued graph is then built with nodes corresponding to
each of the points of the Delauney graph, arcs given by
the mesh and values set using the SAR amplitude, height
and the optical information.
Once the graph is built, a regularized height mesh is com-
puted by defining a Markov random field over the graph.
The optical information is introduced as an external field.

B. Pre-processing steps

Steps to are preprocessing steps required before the
actual height regularization (steps – ).

1) Pre-processing of the SAR data and projection: As
described in the problem statement, before merging the InSAR
and optical data to perform a 3D reconstruction, images must
be transformed into a common coordinate system. Assuming
the optical image is acquired at normal incidence, we then
have to project back the InSAR data from distance sam-
pling coordinates to 3D coordinates. Before projecting the
points from radar geometry to world coordinates, shadows
are detected (step ) to prevent from projecting points with
unknown (i.e., random) height. This detection is made using
the Markovian classification described in [38]. Points outside
the shadows are then projected based on their interferometric
phase and the radar acquisition parameters (step ). This
gives a 3D cloud of points (x, y, z) in the world coordinates.
The projection of this cloud on a horizontal plane is then
triangulated with Delaunay algorithm to obtain a height mesh
(step ). The height of each node of the obtained graph can
then be regularized (see next section).

2) Pre-processing of the optical data: The optical image
is simplified using a geometry+texture decomposition [46]
before fusion (step ). This decomposition is obtained with a
TV+L1 regularization computed using the graph cut algorithm
described in section II. Figure 7 displays the gradient norm
of the optical image before and after its regularization. Most

irrelevant edges are removed. Other edge-detection techniques
could also be used provided they output edges matching those
of the relevant structures.

(a) (b)
Fig. 7. Optical image regularization with TV+L1 decomposition model:
(a) gradient norm of the optical image before regularization; (b) after
regularization, remaining gradients correspond to the building edges.

C. Height regularization model

In this application, the joint information of amplitude and
interferometric data is used together with the optical data.
Similarly as in the previous section, we define the regularized
height field as that which maximizes the posterior probability
according to the log-likelihood and log-prior models described
below.

1) Log-likelihood model: If we consider the conditional
probabilities of amplitude and phase as independent from the
external field, we can use one of the two likelihood models
described in sections III-B and III-C respectively. We used the
separable and approximate model (equations 10 and 11) in the
following.
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2) Prior model: We propose a prior model that accounts
for the phase and amplitude dependency and that introduces
the edges of the optical image.

We have chosen here to introduce the optical data as an
external field with fixed values. By this way, we introduce the
optical image gradient as a prior. Equation 12 is then replaced
by:

ψ(as−at,φs−φt|os,ot) = Gos,ot
max(|as−at|, γ|φs−φt|)

(19)
with Gos,ot

= max(0, 1 − kopt|os − ot|) an expression that
depends on the difference between the values os and ot of
the optical image at sites s and t, and kopt a thresholding
parameter.

When the optical image is constant between sites s and t,
the Gos,ot term equals 1 and does not modify the joint TV
regularization. When |os − ot| is high (corresponding to a
discontinuity), Gos,ot

is low, thus reducing the regularization
of amplitude and phase. This modification helps preserving
the building shapes according to the optical data. As the
convexity of the regularization potential is preserved, the
vectorial algorithm of section II can be used.

Let us note that another alternative to introduce the optical
data would have been to jointly regularize the phase, amplitude
and optical images by including the optical data in the log-
likelihood term and extending equation 19 to include the
regularized optical image (i.e., using a ternary max operator).
This latter solution requires to set adequately the weights of
each of the terms.

D. Results and discussion
We applied the processing steps summarized in figure 6

to the InSAR and optical images of an industrial area near
Dunkerque, France to illustrate the potential of the approach.
Figure 8(a) shows the 6 looks interferometric phase used as
input. It is far too noisy to be usable directly as an elevation
model. We performed a joint amplitude/phase regularization
using the optical image as an external field that eases the
apparition of edges at the location of the optical image
contours. The obtained 3D mesh is displayed on figure 8(b).
The surface is smooth with sharp transitions located at the
optical image edges. Buildings are clearly above the ground
level (note that the shadows of the optical image create a fake
3D impression).

This approach requires a very good registration of the SAR
and optical data and implies the knowledge of all acquisition
parameters which is not always possible (depending on the
source of images). The optical image should be taken with
normal incidence to match the radar data. The image displayed
on figure 8 was taken with a slight angle that displaces the
edges and/or duplicates them. For the method to perform well,
the edges of structures must be visible in both optical and
InSAR images. The method would benefit from a higher-
level edge detection on the optical image (significant edges
detection, building detection).

V. CONCLUSION

In this paper we have presented two applications of a new
optimization algorithm adapted for vectorial data. The first one

is dedicated to the joint filtering of phase and amplitude for
3D reconstruction. The second one is the extension of such
an approach to introduce information derived from an optical
image. The framework described is quite general and can be
used to fuse heterogeneous data according to their statistical
distribution and to prior knowledge that can be introduced
by various ways (edge co-location by joint regularization,
variable weights, . . . ). The discrete minimization algorithm
can handle energies with non-convex data-fidelity terms and
(possibly non-smooth) convex priors. Such energies arise when
modelling speckle noise (non-convex log likelihood) and edge-
preserving regularization using total variation. By defining the
regularized field over a graph, it is possible to merge images
with different sampling/geometry. In both cases promising
results are obtained.

Further work will be dedicated to a more extensive testing
and evaluation of this framework, specially for the new data
that are acquired by TerraSAR-X and CosmoSkyMed. Partic-
ularly, the phase filtering should be adjusted to take wrapped
phase into account. Concerning the fusion application, one of
the main point to be investigated is the accurate registration
between optical and SAR sensors with metric resolution data.

The proposed graph-cut based InSAR regularization tech-
nique will directly benefit in the near future from the ongoing
research on algorithms [5], [24] and fast implementations such
as GPU-based approaches [44] that dramatically improve the
running time of minimum cut computation.
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