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Jouer avec l’ennemi – une analyse de la détection d’intrusion dans les 
réseaux hétérogènes basée sur la théorie des jeux 
 

Résumé 
 
Dans ce rapport, nous modélisons les interactions entre les attaquants et les systèmes de 
détection d’intrusion (IDSs) dans un réseau hétérogène comme un jeu non-coopératif à 
« somme non nulle ». Nous déduisons les équilibres de Nash dans différents contextes, ce qui 
permet de déduire le comportement attendu de la part d’attaquants rationnels. Nous 
caractérisons ensuite le nombre minimum d’IDSs nécessaire pour protéger un système et la 
stratégie optimale pour qu’un IDS contre efficacement les attaquants. La modélisation est 
ensuite validée par des résultats de simulation. 
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Abstract—Due to the dynamic, distributed and heterogenous
nature of today’s networks, intrusion detection systems (IDSs)
have become a necessary addition to the security infrastructure
and are widely deployed as a complementary line of defense to
the classical security approaches. In this paper, we address the
intrusion detection problem in heterogenous networks consisting
of nodes with different security assets. In our study, two crucial
questions are: What are the expected behaviors of rational
attackers? What is the optimal strategy of the defenders (IDSs)?

We answer the questions by formulating the network intrusion
detection as a non-cooperative game and performing an in-
depth analysis on the Nash equilibrium and the engineering
implications behind. Based on our game theoretical analysis, we
derive the expected behaviors of rational attackers, the minimum
monitor resource requirement and the optimal strategy of the
defenders. We then provide the guidelines for IDS design and
deployment. Finally, we illustrate the application of our results
to design efficient defense system in two typical scenarios. The
numerical results show both the correctness of the analytical
results and the effectiveness of the proposed guidelines.

I. INTRODUCTION

Today’s computer and communication networks are becom-
ing more and more dynamic, distributed and heterogenous,
which, combined with the complexity of underlying computing
and communication environments, increases significantly the
security risk by making the network control and management
much more challenging than ever. As a consequence, nowa-
days networks are much more vulnerable to various attacks
such as TCP SYN flooding, SSPing and DoS attack, just to
name a few. The last few years have witnessed significant
increase of attacks and their damages. In such context, the
intrusion detection system (IDS) is widely deployed as a com-
plementary line of defense to the classical security approaches
aiming at removing the vulnerabilities which may not be very
effective or even fail to function in some cases.

In almost all contemporary networks, network nodes (targets
from the attackers’s point of view) usually have different sensi-
bility levels or they possess different security assets depending
on their roles and the data or information they hold. In other
words, the networks are usually heterogenous in terms of
security. More specifically, some targets are more “attractive”
to attackers than others. Examples of such targets includes
the servers containing much sensible secret information, high
hierarchy nodes in military networks, etc. These targets are
usually also better protected and are thus more difficult or
costly to attack. In such heterogenous environments, two nat-

ural but crucial questions are: What are the expected behaviors
of rational attackers? What is the optimal strategy of the
defenders (IDSs)?

In this paper, we answer the posed questions by develop-
ing a non-cooperative game model of the network intrusion
detection problem, analyzing the equilibrium point of the
game and investigating the engineering implications behind
the analytical results. We then derive optimal strategy for
the defender side and the guidelines for IDS design and
deployment.

Intrusion detection has been an active research field in recent
years. Most research efforts address the problem of how to
improve the performance of the IDS: e.g., increase coverage
of attack types, boost detection rate and keep false alarm rate
low, etc [1], [2], [3]. On the other hand, Subhadrabandhu et al.
[8] developed a statistical framework for intrusion detection in
ad hoc networks using theories of hypothesis testing and ap-
proximation algorithms. Several game theoretical approaches
have been proposed to model the interaction between the
attackers and IDSs. Kodialam et al. [4] proposed a game
theoretic framework to model the intrusion detection game
between the service provider and the intruder. The objective
of intruder is to minimize the probability of being detected
by choosing a set of paths to inject malicious packets, and
the objective of the service provider is to sample a set of
links to maximize the detection probability. The equilibrium
strategy of both players is to play the minmax strategy of
the game. Alpcan et al. [5] model the intrusion detection
as a noncooperative non-zero-sum game with both finite and
continuous-kernel versions. In their model a fictitious player
is added to the game to represent the output of the IDS sensor
network. The authors showed the existence and uniqueness of
the Nash equilibrium and studied the dynamics of the game.
[9] studied the problem using Bayesian game theory in the
context of ad hoc networks where both players update their
strategies based on their observation of previous results. Agah
et al. [6] and Alpcan et al. [7] reconsidered the problem in
sensor networks where each player’s optimal strategy depends
only on the payoff function of the opponent.

Our work differs with the existing work in that: 1). We
address the network intrusion detection problem in heteroge-
nous environments consisting of targets with different security
assets; 2). We conduct quantitative analysis on the equilibrium
points of the game and the engineering implications behind to
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further derive the minimum monitor resource requirement and
the optimal strategy of the defenders in such environments.

Our main contributions can be summarized as follows:
• We model the network intrusion detection as a non-

cooperative game and perform an in-depth analysis on
the equilibrium and the engineering implications behind.

• Based on our game theoretical analysis, we derive the
expected behaviors of rational attackers, the minimum
monitor resource requirement of the defenders and the
optimal strategy of the defenders. We then provide the
guidelines for IDS design and deployment.

• We illustrate the application of our results to design
efficient defense system in two typical scenarios. The nu-
merical results show both the correctness of the analytical
results and the effectiveness of the proposed guidelines.

II. NETWORK INTRUSION DETECTION GAME MODEL

We consider a network N = (SD,SA, T ) where SD is
the set of agents equipped with the intrusion detection system
(IDS) module which we refer to as defenders throughout the
paper, SA is the set of attackers and T = {1, 2, · · · , N}
is the set of network nodes which may be attacked by the
attackers, referred to as targets. We start with the simplest
case where there are only one attacker and one defender
in the system. We model the interactions between them as
a non-cooperative game. The objective of the attacker is to
attack the targets without being detected. To this end, it
chooses the strategy p = {p1, p2, · · · , pN} which is the attack
probability distribution over the target set T where pi is the
probability of attacking the target i.

∑
i∈T pi ≤ P ≤ 1

represents the attack resource constraint of the attacker. The
constraint P ≤ 1 can be relaxed if the attacker can attack
multiple targets simultaneously, e.g., broadcasting malicious
packets to attack many network nodes at the same time. This
case will be addressed in later sections. For the defender, in
order to detect the attacks, it monitors the targets with the
probability distribution q = {q1, q2, · · · , qN}, where qi is the
probability of monitoring the target i. Here monitor means that
the defender collects audit data and examines them for of signs
of security problems. Similarly, we have

∑
i∈T qi ≤ Q ≤ 1

that represents the monitor resource constraint of the defender.
We assume that each target i ∈ T processes an amount

of security asset denoted as Wi, which represents the loss
of security when the attacks on i are successful, e.g., loss
of reputation, loss of data integrity, cost of damage control,
etc. The security assets of the targets depend on their roles in
the network and the data or information they hold. We also
assume that the gain for the defender is also Wi in case where
the attacks on i are detected.

Table 1 illustrates the payoff matrix of the attacker-defender
interaction on the target i in the strategic form. In the payoff
matrix, a denotes the detection rate (i.e., true positive rate) of
the IDS of the defender, b denotes the false alarm rate (i.e.,
false positive rate), and a, b ∈ [0, 1]. The cost of attacking and
monitoring (e.g., energy cost) the target i ∈ T are also taken
into account in our model and are assumed proportional to the

security asset of i, denoted by CaWi and CmWi respectively.
CfWi represents the loss of a false alarm. In our study, we
implicitly assume that Ca < 1, otherwise the attacker has no
incentive to attack, similarly Cm < 1.

Monitor Not monitor
Attack (1− 2a)Wi − CaWi, Wi − CaWi,−Wi

−(1− 2a)Wi − CmWi

Not attack 0,−bCf Wi − CmWi 0, 0

TABLE I
STRATEGY FORM OF THE GAME FOR TARGET i

The overall payoff of the attack and the defender is defined
by the utility functions UA and UI as follows:

UA(p,q) =
∑

i∈T
piqi [(1− 2a)Wi − CaWi] + pi(1− qi)(Wi

−CaWi) =
∑

i∈T
piWi(1− 2aqi − Ca)

UI(p,q) =
∑

i∈T
piqi(−(1− 2a)Wi − CmWi)− pi(1− qi)Wi

−(1− pi)qi(bCfWi + CmWi)

=
∑

i∈T
[qiWi [pi(2a + bCf )− (bCf + Cm)]− piWi]

We are now ready to define the network intrusion detection
game with one attacker and one defender.

Definition 1: The intrusion detection game with one at-
tacker and one defender G is defined as follows:

Players: Attacker, Defender
Strategy set: Attacker: AA = {p : p ∈ [0, P ]N ,

∑

i∈N
pi ≤ P}

Defender: AD = {q : q ∈ [0, Q]N ,
∑

i∈N
qi ≤ Q}

Payoff: UA for attacker, UD for defender
Game rule: The attacker/defender selects its strategy

p/q ∈ AA/AD to maximize UA/UD

III. SOLVING THE GAME

For non-cooperative games as G, the most important solu-
tion concept is the Nash equilibrium (NE), where no player
has incentive to deviate from its current strategy [10]. The NE
can be seen as optimal “agreements” between the players. In
the case of the G, we have the following definition of NE.

Definition 2: A strategy vector (p∗,q∗) is said to be a NE
of G if neither the attacker nor the defender can improve its
utility by unilaterally deviating its strategy from the NE.

{
UA(p∗,q∗) ≥ UA(p′,q∗) ∀p′ ∈ AA

UD(p∗,q∗) ≥ UD(p∗,q′) ∀q′ ∈ AD

A. Sensible Target Set

In G, since the attack has limited attack resource, a natural
question is that whether a rational attacker will focus on some
targets or allocate its attack resource to all targets to reduce
the probability of being detected. Next we study this question
before delving into the analysis of the NE. To facilitate the
analysis, we sort the targets based on their security asset Wi
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as: W1 ≥ W2 ≥ · · · ≥ WN . We then define the sensible target
set and the quasi-sensible target set as follows:

Definition 3: The sensible target set TS and the quasi-
sensible target set TQ are defined such that:




Wi >
|TS | · (1− Ca)− 2aQ

(1− Ca)(
∑

j∈TS
1

Wj
)

∀i ∈ TS

Wi =
|TS | · (1− Ca)− 2aQ

(1− Ca)(
∑

j∈TS
1

Wj
)

∀i ∈ TQ

Wi <
|TS | · (1− Ca)− 2aQ

(1− Ca)(
∑

j∈TS
1

Wj
)

∀i ∈ T − TS − TQ

(1)

where |TS | is the cardinality of TS , T −TS −TQ denotes the
set of targets in the target set T but neither in TS nor in TQ.

The following lemma further characterizes TS and TQ:
Lemma 1: Given a network N , both TS and TQ are

uniquely determined. TS consists of NA targets with the
largest security assets such that:

• If WN >
N(1− Ca)− 2aQ

(1− Ca)
∑N

j=1
1

Wj

, then NA = N , TQ = Φ

• If WN ≤ N(1− Ca)− 2aQ

(1− Ca)
∑N

j=1
1

Wj

, NA is determined by the

following equations:




WNA >
NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

WNA+1 ≤ NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

(2)

TQ consists of the target(s) i such that

Wi =
NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

Proof: The proof consists of showing that TS is composed
of n targets with largest security assets and then proving n =
NA by showing neither n < NA nor n > NA is possible. It
follows obviously that TQ is also uniquely determined.

Here we prove case 2 of the lemma, case 1 can be proven
similarly. It is obvious that NA targets with the largest security
assets satisfying (2) consists of a sensible target set TS in that
(1) holds in such case. We then need to prove that TS is unique.

We first show that if i ∈ TS , then j ∈ TS ,∀j < i(Wj ≥
Wi), if not, there exists j0 < i(Wj0 ≥ Wi) such that j0 ∈
T −TS . It follows that Wj0 ≤

|TS | · (1− Ca)− 2aQ

(1− Ca)
∑

k∈TS
1

Wk

. On the

other hand, it holds that Wi >
|TS | · (1− Ca)− 2aQ

(1− Ca)
∑

k∈TS
1

Wk

. Thus

we have Wi > Wj0 which contradicts with Wj0 ≥ Wi. Hence
TS is composed of n targets with largest security assets.

We then prove n = NA by showing that it is impossible
that n < NA or n > NA. If n < NA, on one hand, we have

Wn+1 ≤ n · (1− Ca)− 2aQ

(1− Ca)
∑n

j=1
1

Wj

; On the other hand, from (2),

we have

WNA
>

NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

⇒WNA
(

NA∑

j=1

1
Wj

) >
NA · (1− Ca)− 2aQ

1− Ca
= NA − 2aQ

1− Ca

⇒WNA
(

NA∑

j=1

1
Wj

)− (NA − n− 1) > n + 1− 2aQ

1− Ca

Noticing WNA
≤ Wi,∀i ≤ NA, we have

Wn+1(
n∑

j=1

1
Wj

) ≥ WNA
(

n∑

j=1

1
Wj

)

= WNA
(

NA∑

j=1

1
Wj

)−WNA
(

NA∑

j=n+1

1
Wj

)

≥ WNA(
NA∑

j=1

1
Wj

)− (NA − n− 1)

> n + 1− 2aQ

1− Ca

⇒ Wn+1 >
n · (1− Ca)− 2aQ

(1− Ca)
∑n

j=1
1

Wj

which contradicts with Wn+1 ≤ n · (1− Ca)− 2aQ

(1− Ca)
∑n

j=1
1

Wj

, thus

it is impossible that n < NA. Similarly we can show that
it is impossible that n > NA. Hence, n = NA is uniquely
determined, so is TS . It follows obviously that TQ is also
uniquely determined. This concludes our proof of the lemma.

Remark: It follows straightforwardly from Lemma 1 that
NA ≥ 1. Given the performance parameter of IDS and the
attack cost, TS depends on the security assets of targets and the
monitor resource of the defender. |TS | is non-decreasing w.r.t.
Q. If 2aQ ≥ N(1 − Ca), |TS | = N or TS = T . We explore
the following three typical scenarios to gain a more in-depth
insight on TS : 1). In the degenerated case where N = 1, NA =
1; 2). In the homogeneous case where Wi = Wj ,∀i, j ∈ T ,
NA = N ; 3). In an extremely heterogeneous case where W1 '
· · · ' Wk À Wk+1 ≥ · · · ≥ WN , NA = k. On the other hand,
TQ may be empty. In fact TQ can be regarded as the border
set between TS and T − TS .

We now study the security implications of TS :
Theorem 1: A rational attacker has no incentive to attack

any target i ∈ T − TS − TQ.
Proof: The proof consists of showing that regardless the

defender’s strategy q, for any p ∈ AA such that ∃i ∈ T −
TS − TQ, pi > 0, we can construct another strategy p′ such
that p′i = 0, ∀i ∈ T − TS − TQ and UA(p,q) < UA(p′,q).

If WN ≥ NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

, T − TS − TQ = ∅, the

theorem holds evidently. We now prove the case where WN <
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NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

, in other words, T − TS − TQ 6= ∅.

Consider a vector q0 = (q0
1 , q0

2 , · · · , q0
N ) where

q0
i =





1
2a

(
1− Ca − NA · (1− Ca)− 2aQ∑NA

j=1
1

Wj

)
i ∈ TS

0 i ∈ T − TS
It holds that q0

i ≥ 0 and
∑NA

i=1 q0
i = Q. Let q =

(q1, q2, · · · , qN ) be the monitor probability distribution of the
defender, it holds that

∑NA

i=1 qi ≤ Q, thus ∃m ∈ TS such that
qm ≤ q0

m.
We now consider any attacker strategy profile p =

(p1, p2, · · · , pN ) ∈ AA satisfying
∑

i∈T −TS−TQ pi > 0, i.e.,
the attacker attack at least one target outside the sensible target
set with non-zero probability. We construct another attacker
strategy profile p′ based on p such that

p′i =





pi i ∈ TS and i 6= m
pm +

∑
j∈T −TS−TQ pj i = m

pi i ∈ TQ
0 i ∈ T − TS − TQ

By comparing the attacker’s payoff operating at p and p′,

noticing the fact that Wi <
NA · (1− Ca)− 2aQ

(1− Ca)
∑NA

j=1
1

Wj

,∀i ∈ T −
TS − TQ, we obtain:

UA(p)− UA(p′)

=
∑

i∈T
piWi(1− 2aqi − Ca)−

∑

i∈T
p′iWi(1− 2aqi − Ca)

=
∑

i∈T
piWi(1− 2aqi − Ca)−

( ∑

i∈TS+TQ,i 6=m

piWi(1−

2aqi − Ca) + (pm +
∑

i∈T −TS−TQ
pi)Wm(1− 2aqm − Ca)

)

=
∑

i∈T −TS−TQ
piWi(1− 2aqi − Ca)−

∑

i∈T −TS−TQ
piWm(1− 2aqm − Ca)

≤
∑

i∈T −TS−TQ
piWi(1− 2aqi − Ca)−

∑

i∈T −TS−TQ
piWm(1− 2aq0

m − Ca)

=
∑

i∈T −TS−TQ
piWi(1− 2aqi − Ca)−

∑

i∈T −TS−TQ
pi

NA · (1− Ca)− 2aQ∑NA

j=1(1− Ca) 1
Wj

=
∑

i∈T −TS−TQ
piWi −

∑

i∈T −TS−TQ
pi

NA · (1− Ca)− 2aQ∑NA

j=1(1− Ca) 1
Wj

=
∑

i∈T −TS−TQ
pi

(
Wi − NA · (1− Ca)− 2aQ∑NA

j=1(1− Ca) 1
Wj

)
< 0

Hence, operating at p′ gives the attacker more payoff than
operating at p. As a result, a rational attacker has no incentive
to choose p compared with p′.

Remark: Theorem 1 is a powerful result in that it shows
that focusing only on the targets in TS and TQ is enough
to maximize the attacker’s payoff. Other targets are “self-
secured” such that they are not “attractive” enough to draw

the attacker’s attention due to their security assets and the
monitor resource constraint of the defender, even these targets
are not monitored by the defender.

Noticing the utility function of the defender, if the attacker
does not attack the target i, then the defender has no incentive
to monitor i, either. The following guideline for the defender
is thus immediate:

Guideline 1: The defender should not monitor any target
outside TS and TQ.

B. Nash Equilibrium Analysis

The game G is a finite strategic game, thus admits at least
one NE (pure or mixed strategy) [10]. We cite the following
well known lemma [10] to conduct further analysis on the NE:

Lemma 2: Every action in the support of any player’s
equilibrium mixed strategy yields that player the same payoff.
Any other action yields that player less payoff.

Apply Lemma 2, we obtain the following results on the NE:
Theorem 2: The strategy profile (p∗,q∗) is a NE of G if

and only if it holds that

1) If P ≤ bCf + Cm

2a + bCf
, then q∗i = 0, ∀i ∈ T ,

p∗i

{ ∈ [0, P ] Wi = W1

= 0 Wi < W1

where
∑

Wi=W1
p∗i = P .

2) If P >
bCf + Cm

2a + bCf
, then let

P = (ND + δ)
bCf + Cm

2a + bCf
, ND ∈ Z+, 0 ≤ δ < 1

a) If ND < NA, then

p∗i =





bCf + Cm

2a + bCf
i ≤ ND (Wi > WND+1)

∈
[
0,

bCf + Cm

2a + bCf
δ

]
Wi = WND+1

0 Wi < WND+1

where
∑

Wi=WND+1

p∗i =
bCf + Cm

2a + bCf
δ

q∗i =





1
2a

(
1− Ca − ND(1− Ca)− 2aQ0

Wi

∑ND

j=1
1

Wj

)
i ≤ ND

0 i > ND

where Q0 =
1− Ca

2a


ND −WND+1

ND∑

j=1

1
Wj




b) If ND ≥ NA and N(1− Ca) > 2aQ, then

q∗i =





1
2a

(
1− Ca − NA(1− Ca)− 2aQ

Wi

∑NA

j=1
1

Wj

)
i ∈ TS

0 i ∈ T − TS
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p∗i =





PA

Wi

∑NA

j=1
1

Wj

−
(

NA

Wi

∑NA

j=1
1

Wj

− 1

)
·

bCf + Cm

2a + bCf
i ∈ TS

∈
[
0,

PA

Wi

∑NA

j=1
1

Wj

−
(

NA

Wi

∑NA

j=1
1

Wj

− 1

)
·

bCf + Cm

2a + bCf

]
i ∈ TQ

0 i ∈ T − TS − TQ

where PA >


NA −WNA

NA∑

j=1

1
Wj


 bCf + Cm

2a + bCf
,

and
∑

i∈T
p∗i = P

c) If ND ≥ NA and N(1− Ca) ≤ 2aQ, in this case
ND = NA = N , then





p∗i =
bCf + Cm

2a + bCf

q∗i =
1− Ca

2a

Proof: The proof consists of showing that: 1). ∀p ∈
AA, ∀q ∈ AD, it holds that UA(p∗,q∗) ≥ UA(p,q∗) and
UI(p∗,q∗) ≥ UI(p∗,q); 2). ∀p ∈ AA and p 6= p∗, ∀q ∈ AD

and q 6= q∗, it holds that UA(p∗,q∗) > UA(p,q∗) and
UI(p∗,q∗) > UI(p∗,q).

To prove Theorem 3, we show that only the strategy
profile(s) (p∗,q∗) satisfying the conditions in the theorem
satisfies the following property of NE

{
UA(p∗,q∗) ≥ UA(p′,q∗) ∀p′ ∈ AA

UD(p∗,q∗) ≥ UD(p∗,q′) ∀q′ ∈ AD

We show the above relation holds for case 2.(a) of Theorem
3, other cases can be shown in the same way and are omitted

here. For case 2.(a), P >
bCf + Cm

2a + bCf
and ND ≥ NA, ∀p′ ∈

AA, it follows Wi =
NA(1− Ca)− 2aQ∑NA

j=1
1

Wj

, ∀i ∈ TQ:

UA(p∗,q∗) =
∑

i∈T
p∗i Wi(1− 2aq∗i − Ca)

=
∑

i∈TS
p∗i

NA(1− Ca)− 2aQ∑NA

j=1
1

Wj

+
∑

i∈TQ
p∗i Wi

=
∑

i∈TS+TQ
p∗i

NA(1− Ca)− 2aQ∑NA

j=1
1

Wj

= P · NA(1− Ca)− 2aQ∑NA

j=1
1

Wj

Following Theorem 1 that the attacker has no incentive to
attack any targets outside TS and TQ, we have:

UA(p′,q∗) =
∑

i∈T
p′iWi(1− 2aq∗i − Ca)

=
∑

i∈TS
p′i

NA(1− Ca)− 2aQ∑NA

j=1
1

Wj

+
∑

i∈TQ
p′iWi

=
∑

i∈TS+TQ
p′i

NA(1− Ca)− 2aQ∑NA

j=1
1

Wj

≤ P · NA(1− Ca)− 2aQ∑NA

j=1
1

Wj

= UA(p∗,q∗)

Note that the above relation holds in both cases where
TQ = ∅ and TQ 6= ∅. In the same way, we can show that
UA(p∗,q∗) ≥ UA(p∗,q′),∀q′ ∈ AD.

It leaves for us to prove that any other strategy profile
(pN,qN) 6= (p∗,q∗) cannot be the NE. Otherwise, if
the IDS’s strategy profile at the NE qN 6= q∗, noticing
UA(pN,qN) =

∑
i∈T pN

i Wi(1 − 2aqN
i − Ca), we can solve

pN as

pN
i

{ ∈ [0, P ] i ∈ TM
= 0 i ∈ T − TM

where TM consists of target i such that (1− 2aqN
i − Ca)Wi

is maximized,
∑

i∈TM pN
i = P .

It follows that qN
i < q∗i , ∀i ∈ TM, otherwise if ∃m such

that qN
m ≥ q∗m, then ∀i ∈ TM, i ∈ TS , it follows (1− 2aqN

i −
Ca)Wi = (1−2aqN

m−Ca)Wm that qN
i ≥ q∗i ; ∀i ∈ T −TM, i ∈

TS , it follows (1 − 2aqN
i − Ca)Wi < (1 − 2aqN

m − Ca)Wm

that qN
i > q∗i ; It follows that

∑
i∈T qN

i >
∑

i∈TS q∗i = Q,
which leads to the contradiction.

On the other hand, we have TM ⊆ TS , otherwise if ∃i such
that i ∈ TM and i ∈ T − TS , it follows ∃j ∈ TS such that
qN
j < q∗j that (1− 2aqN

i −Ca)Wi = (1− 2aqN
j −Ca)Wj . It

follows that qN
j ≥ q∗j , which contradicts with qN

i < q∗i .
Moreover, we can show that T 6= TS , if not, by solving the

equations (1− 2aqN
i −Ca)Wi = (1− 2aqN

j −Ca)Wj , ∀i, j ∈
TS , we obtain qN

i = q∗i , ∀i ∈ TS , which leads to contradiction.
Hence, |TM| < NA ≤ ND.

It follows qN
i < q∗i , ∀i ∈ TM that

∑
i∈TM qN

i < Q. It

follows P >
bCf + Cm

2a + bCf
that ∃k ∈ TM such that pN

k >

bCf + Cm

2a + bCf
. We then construct another strategy profile q′′ such

that

q′′i =
{

qN
i i ∈ TM, i 6= k

qN
i + Q−∑

j∈TM qN
j i = k

We have UD(pN,qN) − UD(pN,q′′) =

−
(

pk − bCf + Cm

2a + bCf

)
Wk < 0, which indicates that

(pN,qN) with qN 6= q∗ cannot be a NE. In the same way,
we can show that any strategy profile pN 6= p∗ cannot be a
NE, neither. This concludes our proof.

Remark 1: The case 1 and 2.(a) are the cases where the
attacker disposes limited attack resource such that the defender
does not use up all its monitor resource or even does not
monitor at all. This may also be due to the fact that the monitor
cost is too high or the detection rate a is too low. The valuable
information can be drawn is that in some cases where the
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attack intensity is low, it is a waste of resource for the defender
to monitor all the time. On the contrary, if the monitor cost
outweighs the gain, the defender is better off to keep silent.

Remark 2: The case 2.(b) is the case where both the attacker
and defender use up all their resource to attack and monitor.
In other words, the attacker’s resource P and the defender’s
resource Q are constrained in the sense that at the NE, the
payoff UA/UI is the monotonously increasing w.r.t. P/Q, i.e.,
given more resource, both players can increase their payoff,
as shown in the following:




UA(p∗,q∗) = P
NA · (1− Ca)− 2aQ∑NA

j=1
1

Wj

UD(p∗,q∗) = Q

[
P (2a + bCf )∑NA

j=1
1

Wj

− NA(bCf + Cm)∑NA

j=1
1

Wj

]

− PNA∑NA

j=1
1

Wj

+
N2

A∑NA

j=1
1

Wj

bCf + Cm

2a + bCf
− bCf + Cm

2a + bCf

NA∑

j=1

Wj

(3)

In this case, the game G can be regarded as a resource
allocation problem that each player tries to choose the most
profitable strategy under the resource constraint. The following
corollary further highlights the NE:

Corollary 1: In the case 2.(b) of Theorem 2, for ∀p′ 6=
p∗, ∀q′ 6= q∗, let p̂ = argmaxp∈AA

UA(p,q′), q̂ =
argmaxq∈AI

UI(p′,q) it holds that UI(p∗,q∗) > UI(p̂,q′)
and UA(p∗,q∗) > UA(p′, q̂).

Proof: The proof is similar as that of Theorem 1 and is
omitted here.

Corollary 1 implicates that if the defender does not operate
on the NE q∗, since the attacker chooses its strategy p̂ that
maximizes its payoff UA, as a result, the defender gets less
payoff than operating at q∗. This also holds for the attacker.
Hence, the NE not only corresponds to an equilibrium which
is acceptable for both players such that they have no incentive
to deviate, but consists of the optimal choice for both players.

Remark 3: The case 2.(c) corresponds to the case where
both the attacker’s resource P and the defender’s resource Q
are sufficient to attack and defend. In this case, the sensible
target set TS = T , i.e., all targets are attacked/monitored.
However, both the attacker and the defender do not use up the
total resource to attack/defend, but rather reach an intermediate
compromise at the NE which is unique. In such context, the
situation can be regarded such that the attack and the defender
are playing N atomic intrusion detection games G (N = 1)
on each of the N target. Moreover, at the NE, we have





UA(p∗,q∗) = 0

UD(p∗,q∗) = −bCf + Cm

2a + bCf

N∑

j=1

Wj
(4)

which implicates that: 1). Disposing more attack or monitor
resource does not influence the NE and the payoff of both
players at the NE; 2). For the attacker, decreasing the attack
cost will not increase its utility at the NE since the defender
will increase its monitor probability which will further drag
U∗

A to 0; 3). For the defender, protecting more valuable targets

represents more risk; Given the security assets of the targets,
improving the performance of the IDS module (increasing a
and/or decreasing b) or/and decreasing the monitor cost/false
alarm cost can increase its utility and alleviate the attack
intensity at the NE.

One interesting feature is that the strategy of the attacker p∗

only depends on the performance parameters of the IDS of the
defender. In other words, the defender can actually “control”
the behavior of the attacker at the NE in this case.

C. Further Security Implications Behind the Nash Equilibrium

Theorem 2 quantifies the behavior of a rational attacker
and defender at the NE from which no players have incentive
to deviate. In some cases, the attacker’s strategy at the NE
p∗ is not unique, but all p∗ yields the attacker the same
payoff. In contrast, the defender’s strategy at the NE q∗ is
unique in all cases. Moreover, a rational attacker will never
choose the extreme strategies such as 1) attacking the target
with the largest security asset, or 2) evenly distributing its
attack resource. Such strategies can be easily defended by the
defender and thus cannot bring the most payoff to the attacker.
Hence the attacker actually focuses its attack on TS and TQ
with the probability distribution p∗. With this information in
mind, we provide the following guidelines for the defender:

Guideline 2: The defender should choose the monitor
probability distribution q∗ according to Theorem 2. Under
such context, the attacker gets the same payoff by attacking
any monitored targets and gets less payoff by attacking any
non-monitored targets.

In fact, to equalize the attacker’s payoff of attacking any
monitored targets turns to be the best choice since otherwise,
the attacker will attack the least protected target i where (1−
Ca−2aqi)Wi is maximized to gain extra payoff and the payoff
of the defender decreases accordingly.

We then study the impact of the monitor resource constraint
on the system to gain a more in-depth insight on the NE. To
this end, we compare the defender’s payoff at the NE of the
case 2.(b) where the monitor resource is constrained and 2.(c)
where defender disposes sufficient resource.

From (3) and (4), we can see that the resource constraint
have a significant negative impact on the system when P is
large: for the attacker, it cannot get any profit if the defender
has enough resource to monitor (UA = 0), on the contrary if
the monitor resource is not sufficient, the attacker’s payoff
reaches O(Wi); at the defender side, we can quantify the
payoff loss due to the lack of monitor resource as:

L =−Q

[
P (2a + bCf )∑NA

j=1
1

Wj

− NA(bCf + Cm)∑NA

j=1
1

Wj

]
+

PNA∑NA

j=1
1

Wj

− N2
A∑NA

j=1
1

Wj

bCf + Cm

2a + bCf
− bCf + Cm

2a + bCf

N∑

j=NA+1

Wj

We can see that with the increase of P , the loss due to the
resource constraint turns positive and may raise to O(Wi).

Following this analysis, the necessary conditions to limit the
damage caused by the attacker is to dispose sufficient monitor
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resource and to operate on the NE of the case 2.(c) of Theorem
2 in the sense that: 1) The defender can actually “control” the
behavior of the attacker at the NE; 2). The attacker’s payoff
drops to 0 at the NE regardless of the attack resource P ;

Until now, our analysis is based on the condition that there
is one defender, i.e., Q ≤ 1. In case where N(1− Ca) > 2a,
one defender is not enough to maintain the favorable NE.
Obviously more than one defenders are required. Hence, a
natural question we pose is that under such context, how
much monitor resource Q or, moreover, how many defenders
are needed to achieve system optimality in terms of security?
Furthermore, how to configure them to maximize UI?

IV. INTRUSION DETECTION GAME WITH MULTIPLE
ATTACKERS/DEFENDERS

In this section, we extend our efforts to the intrusion
detection game with multiple attackers/defenders to study the
posed questions. To this end, we relax the resource constraint
P ≤ 1 and Q ≤ 1. We base our study on the following
assumptions: 1). the attacker side disposes sufficient attack
resource P ; 2). the attackers can communicate and cooperate
among them to launch attacks and so do the defenders to
arrange their monitoring; 3). the attack gain on the same target
is not cumulative, i.e., if attackers Ai and Aj attack the same
target m with probability pm at the same time with success,
the attack gain for these attacks is Um

A = (1 − Ca)Wm, not
2(1−Ca)Wm. This assumption is reasonable when the attack-
ers can communicate and cooperate among them. However,
it is not the case at the defender side in that having multiple
defenders monitor the same target influences the detection and
the false alarm rate, and thus may change the final payoff.

We conduct our analysis for the following two cases. In the
first case, each target is monitored by at most one defender
at any time. In the second case, we allow one target to
be monitored by several defenders simultaneously and their
results are combined to further detect possible attacks.

A. Case 1

Since the attack gain is not cumulative, the attackers will
never attack the same target simultaneously, i.e., pi ≤ 1,∀i ∈
T . In this subsection, we address the case where any target
is monitored by at most one defender at any time. The
intuition of adopting this strategy at the defender side is to
use the monitor resource in an economic way, i.e., to cover
the most targets possible with the monitor resource Q. In
such context, our previous analysis can be applied with slight
modification on the notation pi and qi: now pi denotes the
total attack resource from the attackers spent to attack the
target i; similarly, qi denotes the total monitor resource from
the defenders spent to monitor the target i. Apply Theorem 2,
at the NE (p∗,q∗), we have:

1) If 2a ≤ 1−Ca, then p∗i = 1 and q∗i = 1, ∀i ∈ T . In this
case, the IDS modules of the defenders are not efficient
enough to thwart the attacks. The payoff of the attacker

and the defender side at the NE is



UA(p∗,q∗) = (1− Ca − 2a)
∑

i∈T
Wi

UD(p∗,q∗) = −(1− 2a + Cm)
∑

i∈T
Wi

2) If 2a > 1 − Ca, then p∗i =
bCf + Cm

2a + bCf
, q∗i =

1− Ca

2a
,

i ∈ T . The correspondent payoff is: UA(p∗,q∗) = 0,

UD(p∗,q∗) = −
∑

i∈T

bCf + Cm

2a + bCf
Wi.

Here we implicitly assume that Cm ≤ 2a (p∗i ≤ 1) in that
Cm > 2a leads to q∗i = 0, which is the trivial case that we
are not interested here.

For case 1, it is clear that the number of defenders required
to maintain the above NE is Nmin = N . For case 2, at

the NE,
∑

i∈T
qi =

N(1− Ca)
2a

. Noticing that each defender

disposes at most qi = 1 as monitor resource, we need at

least Nmin =
⌈

N(1− Ca)
2a

⌉
defenders to maintain the above

NE under the condition that the defenders can cooperate
among them to arrange their monitoring, where dne denotes
the smallest integer not less than n. Following the condition
2a > 1 − Ca, we have Nmin ≤ N and if Ca ¿ 1,

Nmin ∼ N(1− Ca)
2a

∼ N

2a
>

N

2
.

The intuition behind the above results is that if the detection
rate of the defenders is not high enough to thwart the attacks,
then each target should be monitored as much as possible
to decrease the damages caused by the attackers as much as
possible. On the other hand, if the defenders are efficient
enough in terms of the detection rate, then less monitor
resource is required because in such context, the attacker side
does not attack on the maximum intensity.

Can we improve the results by letting multiple defenders
monitor the same target simultaneously and combine the
monitor results to make the final decision? We answer this
question by performing the following analysis.

B. Case 2

The intuition of adopting this strategy is to combine the
monitor results of multiple defenders to achieve better perfor-
mance. However, the price is higher monitor cost.

Consider the case where x defenders monitor the same
target simultaneously and the attack is said to be detected if it
is detected by at least y (1 ≤ y ≤ x, referred to as detection
threshold) out of the x defenders. The aggregate detection rate
ay

x and false alarm rate by
x can be computed as:

{
ay

x =
∑x

i=y Ci
xai(1− a)x−i

by
x =

∑x
i=y Ci

xbi(1− b)x−i

where a and b is the detection and false alarm rate of the
individual defender. The following lemma studies ay

x and by
x:

Lemma 3: ∀x, y ∈ Z+, y ≤ x and 0 < a, b < 1, it holds:
• Both ay

x and by
x is monotonously decreasing w.r.t. y given

x and w.r.t. x given y (y ≤ x)
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• If x > 1, then ay
x < xa, by

x < xb

Extending Theorem 2, at the NE (p∗,q∗), we have,
1) If 2ayi

xi
≤ 1− Ca, then p∗i = 1, q∗i = 1, ∀i ∈ T ,





UA(p∗,q∗) = (1− Ca − 2ayi
xi

)
∑

i∈T
Wi

UD(p∗,q∗) = −(1− 2ayi
xi

+ xiCm)
∑

i∈T
Wi

2) If 2ayi
xi

> 1 − Ca, then p∗i =
byi
xi

Cf + xiCm

2ayi
xi + byi

xiCf
,

q∗i =
1− Ca

2ayi
xi

, i ∈ T . The correspondent payoff is:

UD(p∗,q∗) =−
∑

i∈T

byi
xi

Cf + xiCm

2ayi
xi + byi

xiCf
Wi, UA(p∗,q∗) = 0.

where xi denotes the number of defenders simultaneously
monitoring the target i with the detection threshold yi, pi

denotes the total attack resource from attackers spent to attack
the target i, qi denotes the monitor resource of each of the xi

defenders spent to monitor the target i.
The previous subsection where each target is monitored

by at most one defender at any time can be regarded as
the degenerated case with xi = yi = 1. For case 1, we
have Nmin = N at xi = yi = 1. For case 2, if xi = 1,
then Nmin = N ; If xi > 1, apply Lemma 3, we get

Nmin =

⌈∑

i∈T
xi

(1− Ca)
2ayi

xi

⌉
≥

⌈
N(1− Ca)

2a

⌉
.

Compare the above analysis with the results in Section 4.A,
if each target is monitored by multiple defenders simultane-
ously, more defenders are usually needed to maintain the NE
although the detection rate may be higher. Hence, to minimize
the required number of defenders, the monitor resource should
be used in an economic way such that each target is monitored
by at most one defender at any time.

However, if the objective of the defender side is not to
maintain the NE with minimum number of defenders, but
rather to maximize its payoff at the NE, e.g., if there is
sufficient monitor resource, then the answer may be different.
In such context, the defender side needs to solve the optimiza-
tion problem max1≤yi≤xi UD(p∗,q∗). The following theorem
studies the optimal strategy in such context:

Theorem 3: The optimal strategy for the defender side is to
let each target be monitored by x∗ defenders simultaneously
with the detection threshold y∗:

(x∗, y∗) =





argmin
1≤y≤x,2ay

x≤1−Ca

1− 2ay
x + Cm C1 < C2

argmin
1≤y≤x,2ay

x>1−Ca

by
xCf + xCm

2ay
x + by

xCf
C1 ≥ C2

where



C1 = min
1≤y≤x

1− 2ay
x + Cm s.t. 2ay

x ≤ 1− Ca

C2 = min
1≤y≤x

by
xCf + xCm

2ay
x + by

xCf
s.t. 2ay

x > 1− Ca

Remark: The above optimization problem can be solved
numerically. The choice of x∗ consists of searching a tradeoff

between the amount of observation based on which the final
decision is made and the monitor cost. The choice of y∗

consists of searching a tradeoff between the detection rate
and the false alarm rate: with a larger y, the false alarm
rate by

x decreases, but the detection rate ay
x also decreases. A

bad choice of y may lead to significant sub-optimality at the
defender side even if it disposes sufficient monitor resource.
We will show this point via numerical study in Section 6.

At the optimal configuration, at least Nmin =⌈
Nx∗(1− Ca)

2
∑x∗

i=y∗ Ci
x∗a

i(1− a)x∗−i

⌉
defenders are needed to

achieve the system optimality in terms of security.
Based on the results in this section, we have the following

guidelines for the defenders:

Guideline 3: In any case, at least
⌈

N(1− Ca)
2a

⌉
defenders

are needed in order to effectively monitor the targets.
Guideline 4: In some cases, having multiple defenders mon-

itoring each targets simultaneously and combining their results
helps the defenders achieve optimal protection performance.

V. DISCUSSION AND GENERALIZATION

We generalize our model to consider the scenario where the
attacker side may launch various kinds of attack with different
gain and cost. Normally, more profitable attacks are more
expensive to launch and usually more likely to be detected. A
natural question is that what attackers’s behavior can we expect
and can the previous model be extended in this scenario.

To this end, we define the possible attack set Γ =
{τ1, τ2, · · · , τn} from which the attackers can choose a subset
of attacks to launch on the target set. The expected payoff
concerning τi ∈ Γ on the target j is [(1− 2aiqj)θi −Ci

a]Wj ,
where Ci

aWj is the attack cost of launching τi, θiWj is the
gain of successfully attacking the target j with τi without being
detected, ai is the detection rate of τi. Our previous modeling
is based on the special case where the possible attack set has
only one element, i.e., |Γ| = 1 and θ = 1.

We extend the previous notations to model the interaction
between the attack and the defender side in this scenario: the
attacker side chooses the strategy p = {p1, p2, · · · , pN} to
maximize its payoff. pi =

∑
j∈Γ pj

i where pj
i is the probability

of launching the attack τj on the target i. The notation of the
defender side is the same as in previous model. The utility
functions are:

UA =
∑

i∈N

∑

τj∈Γ

pj
iWi(1− 2ajqi − Cj

a)

UI =
∑

i∈N

∑

τj∈Γ

qiWi

[
pj

i (2aj + bjCj
f )− (bjCj

f + Cm)
]
− pj

iWi

where bj and Cj
f denote the false alarm rate and cost of τj .

The above network intrusion detection game can be solved
applying Lemma 2, as in our previous analysis, although
the procedure is more tedious. In the following, instead of
performing the tedious demonstration similar to our previous
one, we will highlight the key results and show how our
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previous results can be extended here by restudying the
minimum number of defenders and the optimal strategy of
the defender side in this new context.

In our study, we assume that: 1). Both the attacker and
defender side dispose sufficient attack and monitor resource,
respectively; 2). Cj

a < θj , Cm < 2aj , ∀τj ∈ Γ, other-
wise the defenders have no incentive to monitor; 3). The
attacker side can communicate and cooperate among them
to launch attacks; 4). The attack gain on the same target is
not cumulative in the sense that if the target i is attacked by
τ1, τ2 simultaneously with success, the gain for the attacker
side is maxj=1,2(θj − Cj

a)Wi. This is a simplified scenario.
In fact, the gain may range from maxj=1,2(θj − Cj

a)Wi to∑
j=1,2(θ

j−Cj
a)Wi depending on the specific scenarios under

the condition that
∑

j=1,2(θ
j −Cj

a)Wi ≤ Wi because target i
cannot lose more than the security asset he holds even in the
worst case. Here in order to perform a closed-form analysis,
we choose a simplified scenario. However, our analysis in the
simplified cased can be modified to investigate other cases.
Following the above assumption, the rational attackers will
never attack the same target with the more than one attack
simultaneously; Hence

∑
τj∈Γ pj

i ≤ 1, ∀i ∈ T .
In such context, for a target monitored by x defenders

simultaneously with the threshold y, we define the efficient
attack set Γ(x,y)

e ⊆ Γ such that Γ(x,y)
e consists of the attack(s)

τj with maximum value uj among all possible attacks, where

uj =





θj − 2(aj)yi
xi
− Cj

a θj − Cj
a > 2(aj)yi

xi

θj − Cj
a

2(aj)yi
xi

θj − Cj
a ≤ 2(aj)yi

xi

(5)

where (aj)yi
xi

is defined similarly as ayi
xi

.
The following theorem studies the NE of the game:
Theorem 4: Under the condition that both the attacker and

defender side dispose sufficient attack and monitor resource,
respectively, at the NE (p∗,q∗), for each target i monitored
by xi defenders with the detection threshold yi, it holds that:

• If θj − Cj
a > 2(aj)yi

xi
, then q∗i = 1,

∑

τj∈Γ
(xi,yi)
e

(pj
i )
∗ = 1;

• If θj − Cj
a ≤ 2(aj)yi

xi
, then q∗i =

θj − Cj
a

2(aj)yi
xi

; (pj
i )
∗ =

0 for τj ∈ Γ − Γ(xi,yi)
e and

∑

τj∈Γ
(xi,yi)
e

(pj
i )
∗(2(aj)yi

xi
+

(bj)yi
xi

Cj
f )− ((bj)yi

xi
Cj

f + Cm) = 0;

Proof: The proof follows the same way as that of Theo-
rem 2.

Theorem 3 can be extended to derive the optimal (x∗i , y
∗
i ):

(x∗i , y
∗
i ) =





argmin
θj−Cj

a>2(aj)
yi
xi

∑

τj∈Γ
(xi,yi)
e

θj − 2(aj)yi
xi

+Cm C1 < C2

argmin
θj−Cj

a≤2(aj)
yi
xi

∑

τj∈Γ
(xi,yi)
e

(pj
i )
∗ C1 ≥ C2

where




C1 = min
1≤yi≤xi

∑

τj∈Γ
(xi,yi)
e

θj − 2(aj)yi
xi
− Cj

a s.t. θj − Cj
a > 2(aj)yi

xi

C2 = min
1≤yi≤xi

∑

τj∈Γ
(xi,yi)
e

(pj
i )
∗ s.t. θj − Cj

a ≤ 2(aj)yi
xi

The above results implicates that among the possible of
attacks, the rational attackers only choose the attack(s) in
Γ(xi,yi)

e at the NE which is more “profitable” than others. In
our context, more “profitable” does not mean that the attack(s)
brings the attacker side more gain in case of success, but rather
represents a better tradeoff among different factors such as the
gain in case of success, the attack cost and the probability
of being detected, etc, which is quantified in (5). Moreover,
Γ(xi,yi)

e also depends on the strategy of the defender side
(xi, yi). In other words, the defender side can “control” the
behavior of the attack side to certain extent (which attack to
launch and the intensity of the attack) via its own strategy. At
the defender side, choosing (x∗i , y

∗
i ) consists of searching the

best tradeoff between the detection gain and the monitor and
false alarm cost. In this context, the lower bound of the number

of defenders required to maintain the NE is
⌈

θj − Cj
a

2(aj)

⌉
(where

τj ∈ Γ(1,1)
e ). The lower bound is achieved if xi = yi = 1 and

θj − Cj
a ≤ 2(aj).

We compare the analysis in this scenario with the previous
analysis in Section IV. In the case where there is only one
element in the efficient attack set, our previous analysis in
Section IV can be applied directly in this scenario. In the case
where there are more than one element in the efficient attack
set, at the attacker side, it gets the same payoff as the case
where it launches one attack in the efficient attack set. At the
defender side, the situation is slightly different: since the NE
strategy of the attacker side p∗ is not unique in this case and
different p∗ leads to different payoff of the defender side at the
NE, the optimal configuration (x∗i , y

∗
i ) varies with p∗ (In the

previous model in Section IV, since p∗ is unique, the optimal
configuration of the defender side is fixed). However, this
difference does not pose any additional difficulties in modeling
and the previous analysis can be extended in this scenario, as
shown in the above demonstration.

In our work, we focus on the interaction between the
attacker and the defender side without taking into account
the constraint of network topology. When applying our re-
sults in practical scenarios, the topology constraint should be
considered. [8] provides an interesting investigation on how to
select the IDS active nodes in multi-hop ad hoc networks in a
heuristic way since the problem is proven to be NP-hard. Their
results can be applied in our model to schedule and allocate the
monitor resource. Adding the topology constraint in our model
is out of the scope of this paper, but is on our future research
plan. Other generalization of this work includes modeling the
attacks which are correlated among targets and considering the
scenarios where the defenders may have different IDS settings
such as a, b, etc.
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VI. NUMERICAL STUDY

In this section, we perform numerical study on two typical
scenarios to evaluate our analytical results and illustrate the
application of the analytical model established in this paper to
design efficient defense systems.

We first consider a network with high requirement on
security, e.g., military networks usually require a high level
of confidentiality and need to be resistant to various attacks.
In such scenario, the security assets of targets Wi (i ∈ T ) are
much higher than the related cost: i.e., Ca, Cm, Cf ¿ 1. We
set Ca = Cm = 0.001 and Cf = 0.01. The defenders are
usually equipped with high-performance IDS modules with
powerful processing capability. Hence a relatively large value
a = 0.9 and small value b = 0.05 are chosen in our study.

The second scenario we consider is at the other end of the
spectrum where the attack/monitor cost is important (we set
Ca = Cm = 0.1 and Cf = 0.3 in this case), e.g., a WLAN
in the airport where both attackers and defenders have limited
battery and processing capability. The defender in such cases
are usually not so efficient. We thus set a = 0.4 and b = 0.2.
In both scenarios, there are 10 targets with normalized security
assets: Wi = (11− i) ∗ 0.1 (i = 1, 2, · · · , 10).

A. One Attacker, One Defender

We start with the network intrusion detection game with
one attacker/defender. The attack resource P and the monitor
resource Q are both set to 1. Table 2 shows the NE (p∗,q∗)
calculated using our analytical model. As shown in the ana-
lytical results, both the attack and defender focus only on the
targets in the sensible target set (Target 1-6 for scenario 1 and
target 1-4 for scenario 2).

Scenario 1 Scenario 2
p∗1 = 0.118, q∗1 = 0.279 p∗1 = 0.239, q∗1 = 0.394
p∗2 = 0.131, q∗2 = 0.249 p∗2 = 0.245, q∗2 = 0.313
p∗3 = 0.147, q∗3 = 0.211 p∗3 = 0.253, q∗3 = 0.212
p∗4 = 0.161, q∗4 = 0.169 p∗4 = 0.262, q∗4 = 0.081
p∗5 = 0.197, q∗5 = 0.096 p∗5 = 0, q∗5 = 0
p∗6 = 0.236, q∗6 = 0.004 p∗6 = 0, q∗6 = 0

p∗7 = 0, q∗7 = 0 p∗7 = 0, q∗7 = 0
p∗8 = 0, q∗8 = 0 p∗8 = 0, q∗8 = 0
p∗9 = 0, q∗9 = 0 p∗9 = 0, q∗9 = 0

p∗10 = 0, q∗10 = 0 p∗10 = 0, q∗10 = 0
U∗A = 0.459, U∗I = −0.460 U∗A = 0.585, U∗I = −0.800

TABLE II
NE

Scenario 1 Scenario 2
(UI)max −0.561 −0.965

UI −0.823 −1.265
(U∗I )min −0.461 −0.801

TABLE III
PAYOFF DEGRADATION DUE TO DEVIATION FROM NE

To further evaluate our analytical results and proposed
design guidelines, we investigate the cases where the defender
does not operate on the NE. We thus simulate 300 random

strategies for the defender and we calculate the correspondent
payoff UI under the condition that the attacker chooses its
strategy to maximize its payoff. Table 3 shows the results:
(UI)max denotes the maximum payoff of the defender with
the simulated 300 random strategies, UI denotes the average
payoff of the defender, (U∗

I )min denotes the minimum payoff
of the defender under the condition that the defender operate
on q∗ and the attacker choose its strategy to maximize its
payoff. Comparing the above numerical results, we can see
that in the simulated scenarios, the NE consists of the optimal
choice for the defender under the condition that the attacker
is intelligent to choose its strategy maximizing its payoff. The
above numerical result confirms the proposed guideline 1 and
2 in the analytical model.

B. Multiple Attackers/Defenders

We then study the case of multiple attackers/defenders and
investigate the optimal strategy for the defender side. Figure
1 plots −UI at the NE for the studied scenarios with different
x, y. Table 4 shows the optimal strategy for the defender side
according to the analytical model.

Fig. 1. −UI as function of x, y, left: scenario 1; right: scenario 2

Scenario 1 Scenario 2
x∗ = 1, y∗ = 1 x∗ = 2, y∗ = 1

p∗i = 0.00083, q∗i = 0.556 p∗i = 0.237, q∗i = 0.703
Nmin = 6 Nmin = 15

U∗A = 0, U∗I = −0.0046 U∗A = 0, U∗I = −1.22

TABLE IV
OPTIMAL STRATEGY FOR DEFENDERS

For scenario 1, the optimal strategy for the defender side
is to let each target to be monitored by at most one defender
simultaneously at the probability 0.556. The minimum number
of required defenders is 6. For scenario 2, the optimal strategy
for the defender side is to let each target to be monitored by
2 defenders simultaneously at the probability 0.703. In such
case, we have a(x = 2, y = 1) = 0.64, the minimum number
of required defenders is 15 according to Theorem 3.

From the above results, we can see that the optimal strategy
for the defender side depends very much on the parameters
such as a, b etc. The payoff UI in scenario 1 is much less
sensitive w.r.t. y especially when y ≤ x − 2 then in scenario
2. This can be explained by the fact that ay

x/by
x is less sensible

w.r.t. y given x when a/b is close to 1 or 0. As a consequence,
for scenario 2, deviating from the optimal strategy causes
much more severe utility degradation than scenario 1. Another
valuable information we can draw from the result is that
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appropriately configuring the defense system (e.g., setting x,
y) is so important that a bad configuration not only is a
waste of resource, but causes significant security damage to
the system. This result confirms our remark of Theorem 3.

We then study the impact of lack of monitor resource on
the network security. The following two cases are simulated:
1). There are Nmin defenders operating at q∗; 2). There are
Nmin − 1 defenders choosing random monitor strategies. 300
random strategies are simulated for this case. In case 2, we set
x = y = 1 for scenario 1 and x ≤ 2, y = 1 for scenario 2: i.e.,
for scenario 1, each target is monitored by at most 1 defender
at a time; for scenario 2, each target may be monitored by 1
or 2 defenders simultaneously with detection threshold set to
1. This is a reasonable setting noticing the resource and the
performance parameters of the scenarios. In both cases, the
attacker side chooses its strategy that maximize its payoff and
the attack resource P is set to 10. Table 5 shows the payoff
degradation due to the lack of sufficient monitor resource.

Scenario 1 Scenario 2
U1

I −0.0045 −1.24
(U2

I )max −0.37 −2.98

U2
I −1.3 −16.85

TABLE V
PAYOFF DEGRADATION DUE TO RESOURCE CONSTRAINT

In Table 5, U1
I is the payoff of the defender side at the NE,

(U2
I )max and U2

I are the maximum and average payoff of
the defender side choosing the simulated random strategies.
The result shows that lack of monitor resource degrades
significantly the system security. This degradation becomes
more severe if the attacker side disposes more attack resource.
This can be seen comparing the numerical results in Table 5
(P = 10) and Table 3 (P = 1). Therefore, sufficient resource
and appropriate configuration at the defender side are two
necessary conditions of efficiently protecting the network from
being attacked, which confirms our guideline 3 and 4 in the
analytical model.

VII. CONCLUSION

In this paper, we address the intrusion detection problem in
heterogenous networks consisting of nodes with different secu-
rity assets. We formulated the interaction between the attacks
and the defenders as a non-cooperative game and performed an
in-depth analysis on the NE and the engineering implications
behind. Based on our game theoretical analysis, we derived
expected behaviors of rational attackers. We showed that
sufficient monitor resource and appropriate configuration at
the defender side are two necessary conditions of efficiently
protecting the network. We then derived the minimum monitor
resource requirement and the optimal strategy of the defender
side to achieve system optimality. Based on our results, we
provided the guidelines for IDS design and configuration.
Finally, two typical scenarios were studied to illustrate the
application of our results to design efficient defense system.

As future work, we plan to apply the guidelines in this
paper to design efficient defense system in a challenging
environment: ad hoc networks.
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