

Scaling-up analogical learning

Apprentissage par analogie : passage à l’échelle

Philippe Langlais
François Yvon

*

Octobre 2008

Département Informatique et Réseaux
Groupe IC2 : Interaction, Cognition et Complexité

2008D014

Scaling up Analogical Learning
Apprentissage par analogie: passage à l’échelle

Philippe Langlais
Université de Montréal / Dept. I.R.O.
C.P. 6128, Québec, H3C3J7, Canada
felipe@iro.umontreal.ca

François Yvon
Univ. Paris Sud 11 & LIMSI-CNRS

F-91401 Orsay, France
yvon@limsi.fr

Résumé

Apprentissage par analogie:
passer à l’échelle

Ces dernières années, la communauté du
traitement automatique des langues a mani-
festé un regain d’intérêt pour l’apprentissage
par analogie. Si le principe général de
cette méthode est assez simple, sa réali-
sation pratique se heurte à des problèmes
computationnels difficile, qui en limitent
l’applicabilité à des tâches restreintes. En
particulier, le problème de l’identification
d’analogies parmi un très vaste ensemble
de données est un problème coûteux, pour
lequel aucune solution satisfaisante n’a — à
notre connaissance — été proposée. Dans
cette étude, nous décrivons et comparons
différentes approches pour résoudre ce prob-
lème. Nous proposons une stratégie basée
sur une structure de données originale qui
offre une meilleure réponse au problème
que les approches existantes. Nous étudions
l’efficacité et le passage à l’échelle de ces
stratégies, en considérant une tâche de tra-
duction de formes simples et complexes du
français vers l’anglais.

Abstract

Recent years have witnessed a growing in-
terest in analogical learning for NLP appli-
cations. If the principle of analogical learn-
ing is quite simple, it does involve com-
plex steps that seriously limit its applica-
bility. The most computationally demand-
ing operation involved is the identification

of analogies in the input space. In this study,
we investigate different strategies and data-
structure for efficiently solving this problem
and study their scalability.

1 Introduction

Recently, analogical learning has regained some in-
terest in the NLP community. Lepage and Denoual
(2005) proposed a machine translation system en-
tirely based on the concept of formal analogy, that
is, analogy on forms. The system was further im-
proved and tested in the last IWSLT evaluation cam-
paign (Lepage and Lardilleux, 2007). Stroppa and
Yvon (2005) applied analogical learning to several
morphological tasks involving analogies on words.
Langlais and Patry (2007) applied it to the task of
translating unknown words in several European lan-
guages, an idea investigated as well by Denoual
(2007) for a Japanese to English translation task.

That analogical learning motivated recent stud-
ies is not surprising, since as Pirrelli and Yvon
(1999) thoroughly discuss, it presents several in-
teresting characteristics over more mainstream ma-
chine learning approaches, that bodes well for NLP
applications. However, what comes more at a sur-
prise, is the lack of studies dedicated to discuss prac-
tical issues involved in analogical learning. As a
matter of fact, we are only aware of studies where
analogical learning is applied to restricted tasks, ei-
ther because they focus on limited data (Lepage and
Denoual, 2005; Denoual, 2007), either because they
arbitrarily concentrate on words (Stroppa and Yvon,
2005; Langlais and Patry, 2007; Denoual, 2007).

This study remedies this state of affair by inves-
tigating practical solutions to one of the most chal-
lenging problem of analogical learning, that is, iden-

tifying analogies in the input space. We propose a
data-structure and algorithms that allow to control
the balance between speed and quality. For very
large input data sets (comprising several hundred of
thousands of forms), we propose a heuristic which
dramatically reduces computation time at the cost of
minor losses in recall. We evaluate these new ideas
on the task of translating unknown forms thanks to a
bank of pairs of source/target forms and show its su-
periority to the approach described in (Langlais and
Patry, 2007).

The paper is organized as follows. We first define
in Section 2 the concept of formal analogy and recap
the principle of analogical learning. In Section 3,
we address algorithmic issues involved in step 1 of
analogical learning. We evaluate several variants of
the inference procedure on two translation tasks in
Section 5 and conclude in Section 6. An appendix
provides the details of the algorithms used in this
study.

2 Analogical Learning

2.1 Proportions
A proportional analogy, or analogy for short, is
a relation between four items noted [x : y =
z : t] which reads as “x is to y as z is to
t”. Among proportional analogies, we distin-
guish formal analogies, that is, those that can
be identified at the graphemic level, such as
[This guy drinks too much : This boat sinks =
These guys drank too much : These boats sank].

Formal analogies can be defined in terms of fac-
torizations (Stroppa and Yvon, 2005). Let x be a
string over an alphabet Σ, a factorization of x, noted
fx , is a sequence of n factors fx = (f1

x , . . . , fn
x),

with ∀i, f i
x ∈ Σ∗, such that f1

x�f2
x�fn

x = x, where
� denotes the concatenation operator. Analogies are
thus defined as:
∀(x, y, z, t) ∈ Σ?4

, [x : y = z : t] iff
there exists factorizations (fx , fy , fz , ft) ∈ (Σ?d

)4

of (x, y, z, t) such that, ∀i ∈ [1, d], (f i
y , f i

z) ∈{
(f i

x , f i
t), (f

i
t , f

i
x)

}
. The smallest d for which this

definition holds is called the degree of the analogy.
Intuitively, this definition states that (x, y, z, t)

are made up of a common set of alternating sub-
strings. It is routine to check that it captures the ex-
amplar analogy introduced above, based on the fol-

lowing set of factorizations:1

fx ≡ (This, _guy, ε, _dr, inks, _too_much)
fy ≡ (This, _boat_, ε, s, inks, ε)
fz ≡ (These, _guy, s, _dr, ank, _too_much)
ft ≡ (These, _boat_, s, s, ank, ε)

There is no smaller factorization in terms of the
number of factors involved, and therefore, the de-
gree of this (formal) analogy is 6. Note that the fac-
tors do not have to be morphemes, as this example
clearly shows.

In the sequel, we call an analogical equation an
analogy where one item (usually the forth) is un-
known; analogical equations are denoted: [x : y =
z : ?].

2.2 Analogical Inference
Analogical learning belongs to the family of lazy
learning techniques (Aha, 1997). Let L =
{(i, o) | i ∈ I, o ∈ O} be a set of observations,
where I (resp. O) is the set of possible forms of
the input (resp. output) linguistic system of the ap-
plication. We denote I(u) (resp. O(u)) the projec-
tion of u into the input (resp. output) space; that is,
if u = (i, o), then I(u) ≡ i and O(u) ≡ o. For
an incomplete observation u = (i, ?), the inference
procedure consists in:

1. building EI(u) = {〈x, y, z〉 ∈ L3 | [I(x) :
I(y) = I(z) : I(u)]}, the set of input triplets
that define an analogy with I(u) .

2. building EO(u) = {o ∈ O | ∃〈x, y, z〉 ∈
EI(u) s.t. [O(x) : O(y) = O(z) : o]} the set of
solutions to the equations obtained by project-
ing the triplets of EI(u) into the output space.

3. selecting candidates among EO(u).

To give one example, assume L contains the
following entries (those forms are Finnish/English
medical terms):

(beeta-agonistit, adrenergic beta-agonists)
(beetasalpaajat, adrenergic beta-antagonists)
(alfa-agonistit, adrenergic alpha-agonists)

We might translate the Finnish term alfasalpaajat
into the English term adrenergic alpha-antagonists2

by:
1Note that spaces, which are underlined in those factoriza-

tions, are treated as regular symbols.
2It is the translation sanctioned by the UMLS Metathesaurus

(Lindberg et al., 1993).

1. identifying the input triplet: 〈beeta-agonistit,
beetasalpaajat, alfa-agonistit〉;

2. projecting it into the equation [adrenergic beta-
agonists : adrenergic beta-antagonists = adre-
nergic alpha-agonists : ?];

3. and solving it: adrenergic alpha-antagonists is
one of its solutions.

During inference, analogies are recognized inde-
pendently in the input and the output space, and
nothing pre-establishes which subpart of one input
form corresponds to which subpart of the output one.
This “knowledge” is passively captured thanks to the
inductive bias of the learning strategy, which states
that an analogy in the input space should correspond
to one in the output space. Also worth mention-
ing, this procedure does not rely on any pre-defined
notion of word. This might come at an advantage
for languages that are hard to segment (Lepage and
Lardilleux, 2007).

Implementing analogical inference mainly re-
quires the ability to compute (i.e to test whether a
4-uplet of forms stands in analogical proportion),
and to solve analogical equations. As far as test-
ing is concerned, Stroppa (2005) provides a dynamic
programming algorithm for performing these tasks,
which we reproduce here for the sake of complete-
ness (see Algorithm 5 in the appendix). The com-
plexity of this algorithm is o(|x| × |y| × |z| × |t |).
Solving analogical equations proceeds along simi-
lar lines, so the only algorithmic problem that re-
mains thus concerns the computation of all the exist-
ing analogies in the input space, which is analyzed
in the next section.

3 Identifying input analogies

In this section, we investigate the practical issues
involved in the most computationally demanding
problem of analogical learning, that is, the identi-
fication of analogies in the input space. We inves-
tigate different strategies for efficiently solving this
problem.

3.1 Existing approaches
A brute-force approach for identifying the input
triplets that define an analogy with the incomplete
observation u = (t , ?) consists in enumerating

triplets in the input space and checking for an ana-
logical relation with the unknown form t :

EI(u) = { 〈x, y, z〉 | 〈x, y, z〉 ∈ I3,
[x : y = z : t] }

This amounts to check o(|I|3) analogies, which is
manageable for toy problems only.

Langlais and Patry (2007) deal with an input
space in the order of tens of thousand forms (the typ-
ical size of a vocabulary) using the following strat-
egy for computing EI(u). It consists in solving ana-
logical equations [y : x = t : ?] for some pairs
〈x, y〉 belonging to the neighborhood3 of I(u), de-
notedN (t). Those solutions that belong to the input
space are the z-forms retained.

EI(u) = { 〈x, y, z〉 | 〈x, y〉 ∈ N (t)2,
[y : x = t : z] }

This strategy (hereafter named LP) reduces the
search procedure to the resolution of a number of
analogical equations which grows like the square of
the size of the neighborhood. This result directly
follows from the symmetry of analogical relations:

[x : y = z : t]⇔ [y : x = t : z]

3.2 Exhaustive tree-count search

In this section, we propose to take advantage of a
property on character counts that an analogical rela-
tion must fulfill (Lepage, 1998):

[x : y = z : t]⇒ |x|c + |t |c = |y|c + |z|c ∀c ∈ A

where A is the alphabet on which the forms are
built, and |x|c stands for the number of occur-
rences of character c in x. In the sequel, we de-
note C(〈x, t〉) = {〈y, z〉 ∈ I2 | |x|c + |t |c =
|y|c + |z|c ∀c ∈ A} the set of pairs satisfying
the count property with respect to 〈x, t〉 .

Our strategy consists in first selecting an x-form
in the input space. This enforces a set of necessary
constraints on the counts of characters that any two
forms y and z must satisfy for [x : y = z : t] to hold.
By considering all forms x in turn4, we collect a set

3The authors proposed to sample x and y among the closest
forms in terms of edit-distance to I(u) .

4Anagram forms do not have to be considered separately.

of candidate triplets for t . A verification of those
that actually define with t an analogy must then be
carried out. Formally, we built:

EI(u) = { 〈x, y, z〉 | x ∈ I,
〈y, z〉 ∈ C(〈x, t〉),
[x : y = z : t] }

This strategy will only work if (i) the number of
quadruplets to check is much smaller than the num-
ber of triplets we can form in the input space (which
happens to be the case in practice), and if (ii) we can
efficiently identify the pairs 〈y, z〉 that satisfy a set
of constraints on character counts. To this end, we
propose to organize the input space thanks to a data
structure called a tree-count (see Section 4), which is
easy to built and supports efficient runtime retrieval.

As will be discussed in Section 5, a large number
of calls to the analogy checking algorithm must be
performed during step 1 of analogical learning. The
following property may come at help:

[x : y = z : t]⇒
(x[1] ∈ {y[1], z[1]}) ∨ (t [1] ∈ {y[1], z[1]})
(x[$] ∈ {y[$], z[$]}) ∨ (t [$] ∈ {y[$], z[$]})

where •[$] indicates the last character of •. A simple
trick (hereafter called S-TRICK) consists in calling
for the verification of an analogy only for the triplets
that pass this test.

3.3 Sampled tree-count search
As will be shown in Section 5, using the tree-count
search strategy allows to exhaustively solve step 1
for reasonably large input spaces (tenth of thousands
of forms). Computing analogies in very large input
space (hundreds of thousand of forms) however re-
mains computationally demanding, as the retrieval
algorithm must be carried out o(I) times. In this
case, we propose to sample the x-forms:

EI(u) = { 〈x, y, z〉 | x ∈ N (t),
〈y, z〉 ∈ C(〈x, t〉),
[x : y = t : z] }

There is unfortunately no obvious way of se-
lecting a good subset N (t) of input forms, as
analogy does not necessarily entail the similarity
of “diagonal” forms, as illustrated by the anal-
ogy [une pomme verte : des pommes vertes =

une voiture rouge : des voitures rouges], which in-
volves singular/plural commutations in French nom-
inal groups. In this situation, randomly selecting a
subset of the input space seems to be a reasonable
strategy (hereafter RAND).

For some analogies however, the first and last
forms share some sequences of characters. This is
obvious in [dream : dreamer = dreams : dreamers],
but can be more subtle, as in our first example
[This guy drinks too much : This boat sinks =
These guys drank too much : These boats sank]
where the diagonal terms share some n-grams rem-
iniscent of the number (This/These) and tense
(drink /drank) commutations involved.

We thus propose a sampling strategy (hereafter
EV) which selects x-forms that share with t some se-
quences of characters. To this end, input forms are
represented in a k-dimensional vector space, whose
dimensions are frequent character n-grams, where
n ∈ [min;max]5. A form is thus encoded as a bi-
nary vector of dimension k, in which the ith coef-
ficient indicates whether the form contains an oc-
currence of the ith n-gram. At runtime, we select
the N forms that are the closest to a given form t ,
according to a distance.6 Figure 1 illustrates some
forms selected by this process. For comparison pur-
poses, we also tested a sampling strategy which con-
sists in selecting the x-forms that are closest to the
form t , according to the conventional edit-distance
(hereafter ED).

establish a report – order to establish a – has
tabled this report – is about the report – basis
of the report – other problem is that – problem
that arises – problem is that those

Figure 1: The 8 nearest neighbors of to establish
a report in a vector space computed from an input
space of over a million phrases.

4 The tree-count data-structure

A tree-count is a tree encoding a finite set of forms.
Each node corresponds to a finite subset of forms
and stores pointer to these forms. Starting with a

5In practice, we retained the k-most frequent n-grams. Typ-
ical values are min=max=3 and k=20000.

6We used the Manhattan distance in this study.

root node r representing the entire lexicon, the tree-
count is recursively built by splitting each node n as
follows: we choose a letter c (not occurring on the
path from r to n), and partition the forms in n ac-
cording to their number of occurrences of c. This
means that in a tree-count, each node is labeled with
the split letter c, and each arc between a mother node
n and her daughter node m is labeled with the count
of c in the forms belonging to m. A tree-count can
be seen as an unpruned decision tree for partitioning
forms based on a bag-of-letter representation, based
on a pre-defined order of the letters whose count is
tested. This structure allows, for instance, the iden-
tification of anagrams in a set of forms: it suffices
to search the tree-count for nodes containing more
than one pointer to forms in the vocabulary. An ex-
amplar tree-count is displayed in Figure 2 for a vo-
cabulary. The node double circled in this figure is la-
beled by the symbol d and encodes the 6 input forms
that contain 1 occurrence of ’o’ and 1 occurrence of
’s’ (this reflects from the path from the root to this
node). One form is os , referenced by the pointer m ,
the other five forms are found by descending the tree
from this node downwards; among which gods and
dogs , two anagrams encoded by the leaf associated
by the pointers b and k.

4.1 The construction process

Section 6 provides a step-by-step illustration of the
construction of a tree-count for a small input space.
As explained in this section, the construction al-
gorithm only requires to specify an arbitrary order
on the letter symbols; it will then involve a simple
traversal of the set of forms and is therefore time ef-
ficient. Simply put, it consists in checking that the
counts of the different letters of a form are present
in the right place in the tree-count. Whenever this is
not the case, a new node is added in the tree. When
enumerating symbols in order, we only store zero-
count nodes when necessary. In particular, the depth
of a tree-count is typically much lower than the size
of the alphabet.

4.2 Retrieval process

As a simple way to see how the retrieval of (all) the
pairs of forms satisfying a given set of constraints
on counts is performed, imagine that we have two
copies of the tree-count we search into. The re-

ηu

λp

a,l

βa

n

θg

b,k

c

κ k

µ y

f,i

g,h

ε s

ι l

e,j

dm
d

ζ m

δ tγ s

α o

0

1 2
1

1 1

1

1

1
0

0 1

1

1

21

1
20

1

Figure 2: A tree-count encoding the set: {soup(a),
gods(b), odds(c), sos(d), solo(e), tokyo(f), moot(g),
moto(h), kyoto(i), oslo(j), dogs(k), opus(l), os(m),
a(n)}. The symbol labeling a node is represented in
a box; the counts of each symbol labels each vertice.
Roman letters in nodes represent pointers to input
forms; greek symbols label internal nodes.

trieval then consists in maintaining two pointers,
one in each tree-count, that keep track of the pos-
sible ways a given constraint can be satisfied. Con-
sider for instance the situation depicted in Figure 3,
where nodes n and m are the two currently visited
nodes, and imagine that we search for pairs of forms
containing a total of 3 occurrences of the symbol
s . Then, the node pairs (α, d), (β, c) and (γ, a)
will have to be visited. In order to avoid the ac-
tual duplication of the tree-count,7, we instead main-
tain a frontier, that is, the set of pairs of nodes in
the tree-count that satisfy all the constraints encoun-
tered so far. Continuing our example, the frontier
will be {(α, d), (β, c), (γ, a)} after considering the
constraint on symbol s . The details of the retrieval
process are provided in Algorithm 4 in Section 6.

The complexity of the retrieval step is mainly
dominated by the size of the frontier built while
traversing a tree-count. The worst-case scenario
would be to work with an input space containing
only anagrams, in which case the tree-count would
contain only one path ending in a leaf pointing to all

7A tree-count can be rather huge.

n s

α β γ

0 1 3

m s

a b c d

0 1 2 3

Figure 3: Illustration of the retrieval step. n and m
are two nodes in the tree-count which satisfy the set
of constraints on counts encountered so far. There
are 3 ways to count 3 occurrences of the symbol s in
two forms: 0+3 (one form in α, and one in d), 1+2
(one form in β, one in c) and 3+0 (one form in γ,
and one in a).

the forms in the space, and the cartesian product of
those forms would have to be considered. In prac-
tice however, because of the sparsity of the space we
manipulate in NLP applications8, retrieval is a fast
operation (see Section 5).

5 Experiments

5.1 Protocol
In order to assess the effectiveness of these algo-
rithms, we investigated two translation tasks. The
first one, called word, consists in translating un-
known words, thanks to a dataset of pairs of words
in translation relation. The second one, called seq,
consists in translating phrases thanks to a dataset
of pairs of source/target phrases. The motivation
for the latter task is twofold. First, the long term
prospect of this study is to enrich the transfer table
of a typical phrase-based translation engine (Koehn
et al., 2003). Second, phrase-tables are usually very
large, therefore offering an interesting testbed.

We collected a phrase-table from the training ma-
terial of the evaluation task of the 2006 workshop of
Machine Translation (Koehn and Monz, 2006) using
the standard practice in the SMT community, with
the exception that only the 5-most likely translations
for each source phrase were kept. The word-based
alignments built as a by-product of the phrase-table
extraction process are used in the word task: for
this task, we collected a set of pairs of source/target
words by filtering in the most likely word pairs
(p > 0.1) in the word-based model. In order to

8This is true even for the very large input spaces considered
in this study.

study the scalability of our approach, we randomly
sampled these tables, the characteristics of which are
reported in Table 1.

We chose to translate French forms into English
for the only reason that it facilitates the assessment
of the produced translations. Analogical learning
based on formal analogies has been shown to be a
viable translation device for languages of different
families, such as Chinese/English, Japanese/English
(Lepage and Denoual, 2005) or Arabic/English
(Lepage and Lardilleux, 2007). In any case, our
main objective here is to study the practicality of
analogical learning in large-scale tasks.

The test material was randomly selected from
WMT’06 material. It consists in 1 000 phrases9 of
at least two and at most five words that do not be-
long to the phrase-table and that do not contain any
digit.10 Similarly, we selected 1 000 words for test-
ing the word task.

corpus pairs s-forms t-forms
small 328 783 92 860 252 384
medium 572 518 292 860 478 521
full 13 975 819 11 317 717 10 554 336
test 1 000 seqs. — avg. 4.5 words
small 56 510 20 000 18 999
medium 141 656 50 000 33 346
full 237 882 84 076 44 507
test 1 000 words — avg. 8.9 chars

Table 1: Main characteristics of the datasets used.

For all the experiments reported below, we pro-
vide timing for both step 1 and 2 of analogical learn-
ing. Our main focus is however step 1, for which
we propose dedicated solutions. This means that,
in practice, we did not pay attention to make step 2
time efficient. The only trick used during step 2 is
directly connected to the count property discussed
above and is justified by the fact that a great por-
tion of the computation time of step 2 is spent solv-
ing (target) analogical equations, a large portion of
which do not yield any solution. It turns out that,
here again, a simple trick (called T-TRICK) can save

9Here and elsewhere, following the usage in the SMT com-
munity, we use phrase in rather loose sense of “contiguous se-
quence of words”.

10We did not want to be distracted by phrases that could be
translated correctly by just fixing problems with numbers.

many calls to the solver. It consists in using the fol-
lowing property on counts as a test:

[x : y = z : ?] 6= φ if |x|c ≤ |y|c + |z|c,∀c ∈ A

In other words, whenever a symbol occurs more fre-
quently in x than in does in yz, [x : y = z : ?] is
bound to fail, and needs not be solved.

5.2 Characterization of tree-counts
The main characteristics of the tree-counts built in
this study are reported in Table 2. The average num-
ber of nodes per form (anf) is rather stable for the
seq task and around 6.5 nodes, which is less than
the average length of the forms in the input space.
For the word task, the average number of nodes per
form decreases with the size of the input space and
is also less than the average length (counted in char-
acters) of the input forms.

The average time (ms) for retrieving the pairs of
input forms verifying a given set of constraints on
character counts11 is of practical importance. For
both tasks, this time increases with the size of the
input space, as expected. On average, retrieving all
the pairs of forms satisfying a set of constraints on
counts requires 0.2 milliseconds for an input space
of above 100 000 forms (line 1/100, column seq),
which is fast. We observe a roughly linear depen-
dency between the size of the input space and the
duration of the retrieval in the tree-count.

5.3 The word task
We tested different variants of analogical learning on
the word task, yielding results reported in Table 3.
The variants where no filtering is done (n = ∞)
are unsurprisingly the slowest: it requires on aver-
age only 7.4 seconds to translate a word when the
small dataset is used, and more than 3 minutes
with the full model. This clearly demonstrates the
need for filtering.

We investigated the EV filtering strategy with dif-
ferent thresholds. As expected, the less we filter, the
better the recall. A good balance between speed and
recall is observed for all datasets with relatively low
thresholds, which is very encouraging. For instance,

11The times reported in this study have been measured on
a Pentium computer clocked at 3Ghz and should not be con-
sidered as lower bounds but instead as simple indicators of the
expectations that a perfectible implementation might meet.

seq word
size anf front ms anf front ms
1/1000 6.7 38 0.04 5.9 4 1.9e-05
1/100 6.3 150 0.2 4.8 8 2.3e-05
1/10 6.6 1081 3.9 3.8 22 3.6e-05
1/5 6.5 1655 6.6 3.5 29 3.6e-05
1 5.8 3930 16.7 2.8 57 9.2e-05

Table 2: Main characteristics of the tree-counts built
for the two tasks, as a function of the ratio of the
full datasets considered. anf indicates the aver-
age number of nodes per form; front stands for the
average (over 1000 runs) of the maximum frontier
encountered while searching the tree-count; ms is
the average time (in milliseconds) taken for a search.
The alphabet for task seq contains 101 different
characters, the one for task word contains 54.

input output
n s %s (s) t %t (s)
102 ev 5 66.2 0.0 10 52.9 0.0
103 ev 34 83.1 0.2 40 77.5 0.2
104 ev 217 89.1 2.4 155 84.9 0.8
∞ 421 89.5 5.6 288 85.6 1.8

lp 17 71.7 7.4 34 60.9 0.0
102 ev 31 88.2 0.1 49 82.2 0.2
103 ev 261 94.1 0.5 325 92.2 1.6
104 ev 1435 96.8 7.3 1196 95.4 6.5
∞ 4406 97.2 45.9 3094 95.9 21.6

lp 46 85.0 7.6 79 80.1 0.16
102 ev 78 93.3 0.2 123 90.1 0.6
103 ev 746 96.4 1.2 1004 94.9 4.9
104 ev 4673 98.2 15.8 4364 97.3 22.8
∞ 21760 99.3 176.3 — — —

lp 56 88.9 6.3 106 85.8 0.2

Table 3: Characteristics of the task word. s indi-
cates the average number of input analogies found; t
the average number of target equations with at least
one solution; %s (resp. %t) stands for the percent-
age of source forms for which (at least) one source
triplet (resp. one translation) is found; and the (s)
columns stands for the average time (counted in sec-
onds) to treat one form in the input and output space
respectively. The top, middle and bottom boxes con-
cern the small, medium, and full datasets re-
spectively.

sampling 1 000 x-forms in the medium dataset al-
lows to translate 92.2% of the test words at an ap-
proximative rate of 2 seconds per word. This rep-
resents 96.1% of the forms that could be translated
without filtering. Furthermore, most of the compu-
tation time is spent during step 2, which as explained
above, was not optimized for speed.

The best variant tested so far could produce can-
didate translations for 97.3% of the source forms.
Langlais and Patry (2007) reported recall rates in
the order of 60% for a similar task. The best com-
promise between speed and coverage we got with
this approach is also reported in Table 3 (line LP).
For all the datasets, we observe a much higher re-
call with the EV variants, as well as a significant
improvement of processing time. To take only one
example, on the medium dataset, half a second is
enough on average to identify 261 input analogies
with EV, while LP can only identify 46 analogies in
7.6 seconds! This clearly shows the superiority of
the approach we propose. Note that the computation
time of step 2 is lower for LP because a much lower
number of analogies is identified by this method dur-
ing step 1.

Finally, it is worth noting that the two tricks dis-
cussed above proved very efficient: S-TRICK allows
to filter out roughly half of the triplets identified; T-
TRICK saves approximately 90% of the target equa-
tions that must be solved.

5.4 The seq task
We also investigated different variants of analogical
learning for translating phrases. We compare differ-
ent strategies for sampling x-forms on the small
and medium datasets. We report in Table 4 results
for the variants that sample 1 000 x-forms, as well as
variant without sampling (n = ∞). Again, Table 4
clearly shows the superiority of the EV strategy. On
the medium dataset, sampling 1 000 forms accord-
ing to EV allows to identifying an average of 34 in-
put analogies for 75.2% of the test phrases, while
the ED strategy is only able to identify an average
of 6 analogies for 37.9% of the input phrases. It is
worth observing that sampling x-forms according to
their edit-distance to the source form (ED) is no bet-
ter than selecting them randomly; a fact already dis-
cussed earlier.

In the absence of filtering (∞ lines), 61.9% of

input output
n s %s (s) t %t (s)

rand 8 42.1 1.8 132 31.1 3.6
103 ed 8 38.0 2.1 162 29.2 8.3

ev 35 74.3 1.1 457 58.8 16.8
∞ 807 77.2 205.6 2407 61.9 101.1

rand 3 37.1 8.9 52 26.9 1.3
103 ed 6 37.9 9.0 126 28.2 6.5

ev 34 75.2 3.3 440 59.4 16.3
∞ 941 81.5 3061.5 2401 64.8 108.5
103 ev 36 76.4 11.2 590 75.9 19.1

Table 4: Characteristics of the task seq. The top
box concerns the small dataset, the middle one,
medium; the last line is computed with a dataset of
over 1 million source forms.

the test forms receive at least one translation with
the small dataset, and 64.8% with the medium
one. We did not search exhaustively with the largest
dataset, but applying our strategy to a model size of
1 million pair of forms increased coverage to 75.9%
(last line).

Depending on the configurations, up to 10 856
equations on average had to be solved. Even if it
is certainly useless to solve all of them, it is interest-
ing to note that they only constitute 25% of the target
equations formed by projecting source triplets. This
important reduction is again due to the T-TRICK (the
S-TRICK saves a third of the analogies to check).

5.5 Discussion

One might argue that the time required by analogi-
cal learning for translating a form is too high, what-
ever the filtering strategy we employ. This is true to
some extent for the seq task, where large datasets
are considered: 11 seconds on average to identify in-
put analogies while translating a single phrase is ad-
mittedly an overkill. We must note however that this
represents a drastic reduction of computation time
compared to previous approaches with this learning
technique. Indeed, we are not aware of any work on
analogical learning that tackle large input spaces as
we do here.

If we strive for more speed, several simple
heuristics can be applied to further reduce com-
putation time. First, we can impose a limit of

the size of the frontier during step 1. Second,
we observe that for some forms, many source
analogies are being identified (for instance, 7 830
source analogies were identified by one variant for
the French form à des solutions de (to solution of),
which slows down the process. It would be simple
matter to control their number.

We already mentioned that we did not pay atten-
tion to step 2 in this work, but many simple heuris-
tics can be used to reduce its computation time. For
instance, the equation solver used in this study also
involves some sampling that could be adjusted for
speed. A simple timeout could be imposed in order
to cut down computation time when too many target
equations are to be solved (which happens for a few
test forms).

For the time being, we are quite pleased with the
fact that analogical learning is fast enough to be
tested and analyzed in many different applications
involving large input spaces. In any case, the task
we have in mind, that is, enriching a phrase-table,
lends itself for off-line processing.

It is instructive to put these figures in perspective.
In a recent study, Lepage et al. (2007) measured the
number of true analogies (formal analogies that are
meaningful) in a corpus of nearly 100 000 chunks
extracted from 20 000 (short) Japanese sentences in
the tourist domain. Identifying all the analogies be-
tween chunks in this corpus required them two days
of computation on a 2.2 Ghz processor. This number
of chunks roughly corresponds to 1/100 of the full
dataset of phrases we have. Thus, Table 2, tells
us that approximatively 0.2×100 000 milliseconds
would be necessary with our strategy for searching
all the potential analogies, that is, 20 seconds. Time
would be required, though, to check whether those
quadruplets form actual analogies.

5.6 A front-end evaluation
In the previous sections, we analyzed the tractability
of analogical learning. We now assess the quality of
the produced outputs. We provide in Figures 4 and
5 some examples produced for the tasks word and
seq respectively. It clearly shows the necessity of
filtering (step 3) since many ill-formed translations
are being produced. This is especially true for the
translation of words, where many analogies are be-
ing identified (see Table 3).

concurrençaient → (competed,196) (again-
sted,160) (goingning,148) (battlening,140)
(doning,140) . . .
regrettablement → (regrettably,266) (unfor-
tunates,99) (regrettabley,81) (regrettabyl,71)
(unfortunatey,65) . . .
escomptent → (expecte,208) (discount,196)
(ared,179) (accompetents,179) (hading,133)
. . .

Figure 4: Excerpt of the output produced for the
word task. Translations in bold are oracle ones.

a été discutée et→ (was debated, ,250) (de-
bated, ,249) (has been discussed ,200) (were
discused ,188) . . .
a fait mon → (has carried out is ,169) (has
carried out its ,154) (has carried out ,154)
(didy m ,147) . . .
accord conclu au → (the agreement reached
,319) (agreement on a ,308) (the agreement
concluded ,295) (deal made one ,272) . . .

Figure 5: Excerpt of the output produced for the
seq task. Translations in bold are correct, trans-
lations in italic might be correct in some contexts.

A form can be generated thanks to many analo-
gies; therefore, the frequency with which it is gener-
ated can be used as a selecting criterion. This was
for instance used by Lepage and Denoual (2005).
Langlais et al. (2008) also showed that a classifier
can be trained to recognize good analogies from spu-
rious ones.12 In this study, where the potential of the
approach is our main concern, we did not apply any
filtering strategy but sorted the forms according to
their frequency.

An evaluation of the translations produced by the
variant with the largest recall for each task has been
carried out. For the word task, we simply consid-
ered as valid any translations of the test words that is
sanctioned by our automatically acquired translation
dictionary. Recall that this dictionary only contains
very likely associations (p >= 0.1), which removes
part of the noise inherent in automatically acquired

12For instance, the form regrettabley produced for the trans-
lation into English of the French regrettablement (regrettably)
is said to be spurious (see Figure 4).

resources.
As much as 975 out of the 1 000 test words receive

at least one translation, with a average number of
candidate translations per source word of 875 800 !
For 408 test words (slightly more than 40%), the list
of candidate translations contains a sanctioned trans-
lation. The average position of the first oracle trans-
lation in the list is quite high (1 602), which again,
is due to the fact that we do not filter the candidates
produced.

For the seq task, we translated phrases belonging
to sentences of the test material of WMT’06. Since
those sentences are not word-aligned with their ref-
erence translation, we resorted to a manual evalua-
tion. We analyzed the 50-first translations produced
for each source phrase and recorded the rank of the
first valid or unsure translation in the list, if any. We
classified as unsure a translation that strongly de-
pends on the context in which the source form ap-
pears. We assessed the 250-first source phrases of
the test material that received at least one translation.
For 163 phrases (65.2%), we found a good transla-
tion in the list (at an average position of 9). For an
extra 47 phrases (18.8%), we identified unsure trans-
lations.

Therefore, a total of 76% of the source phrases
we analyzed, received a (potentially) useful trans-
lation in the 50 top-frequent list. For the remain-
ing phrases, we found many of them very dif-
ficult to translate without further context. This
is, for instance, the case of the French form
agit l which happens to be in our test mate-
rial and which cannot be translated without its
context: dans lequel [agit l] ’ union européenne (in
which [acts the] European Union).

6 Conclusion

We investigated the scalability of analogical learn-
ing on two large-scale translation tasks. The first
one consists in translating unknown words, thanks
to a dataset of pairs of words in translation rela-
tion. In the second task, we translated phrases of
up to 5 words thanks to a dataset of pairs of phrases.
The data-structure and algorithms we propose con-
stitute an improvement over the sampling strategy
described by Langlais and Patry (2007).

For the word task, we automatically evaluated

that at best, a recall of 97.5% can be obtained, with
a valid (as sanctioned by a reference) translation pro-
posed in 40% of the cases. We manually assessed
an excerpt of the translations produced for the seq
task and showed that the variant with the largest re-
call could propose a translation in the the 50-first
positions in 76% of the cases.

This study opens up interesting prospects for ana-
logical learning. Enriching a phrase-based table of
the kind being used in statistical machine transla-
tion, the task we had in mind while initiating this
work, is one of those. Sequence labeling such as
tagging could be investigated as well.

Acknowledgments

Part of this work has been accomplished while the
first author was visiting the department of Computer
Science and Networks at Telecom ParisTech, Paris.
This paper is an extended version of Langlais and
Yvon (2008).

Appendix

In this section, we detail the algorithms used to built
a tree-count from a set of forms, and to retrieve pairs
of forms satisfying a given set of constraints.

In: an alphabet A, a set of forms I
Out: A tree-count τ encoding the forms in I

1: τ ← nil
2: for all f ∈ I do
3: counts← encode(f)
4: 〈current, parent, i〉 ← search(counts, τ)
5: while i < |A| do
6: insert(counts, i)
7: i← i + 1
8: current.forms← current.forms ∪ {f}
9: return τ

Algorithm 1: Algorithm for creating a tree-count
from a set of forms.

Creating a tree-count
Although the creation of a tree-count is a rather sim-
ple matter (see Section 4.1), its description requires
some conventions, as well as a certain level of de-
tails.

First of all, we assume an arbitrary order on
the symbols of the alphabet A, that is, we assume

A(i) < A(j), ∀i < j. In this study, we sorted the
symbols in descending order of their frequency in
the input forms. For instance, in the example of Fig-
ure 2, the following order was assumed: o < s <
d < t < g < k < l < m < p < u < y < a.

Our algorithm makes use of a function
encode(form), which computes and returns (in
counts) a bag-of-letters representation for the input
form: counts[i] is simply the number of occur-
rences of the symbol A(i) in form. For instance,
encode(moot) in our running example returns
the 12-valued vector: 〈2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0〉;
2 being the number of o in moot , the first (resp.
second) 1 being the count of t (resp. of m).

In our implementation of tree-counts,
a node n is represented by a quadruplet
〈n.index, n.count, n.forms, n.children〉, the
components of which respectively encode the
index in A of the symbol labeling n; the count of
A(p.index) in the forms reachable from n and its
descendants (with p the father node of n); the set of
forms to which n refers to (which can be empty);
and the children of n. To take one example, the
double-circled node in the tree-count of Figure 2
is represented as 〈8, 1, {os}, 〈η, θ, c〉〉, since m is
the 8th symbol of A, 1 is the number of symbols s;
this node has three children, and os is the only input
form which contains 1 symbol o and 1 symbol s ,
and no other symbol. We introduce # to mean the
absence of a value in a given field of a node. Last,
we use the notation n.children(i) to denote the ith
child of node n, and root(τ) to denote the root
node of the tree-count τ .

The construction algorithm is given in Algo-
rithm 1. It involves a single pass over the forms
to index. The algorithm makes use of a few aux-
iliary functions, namely search which search in
the tree-count for the current node to which a new
node must be added (if needed), and insert which
creates a new node in order to account for new sym-
bols not yet encoded in the tree-count. The details of
these functions constitute the core of the tree build-
ing process, and are detailed in Algorithms 2 and 3.

Algorithm 2 consists in descending the tree-count,
guided by the count-vector which encodes the in-
put form to be added in the tree. If a form al-
ready exists in the tree-count, then search will
descend the tree-count down to the leaf pointing to

1: function search(counts, τ)
2: i← 0
3: parent← nil
4: current← root(τ)
5: while current 6= nil and i < |A| do
6: if i > current.index then
7: break
8: else if i < current.index then
9: if counts[i] 6= 0 then

10: i← i + 1
11: else
12: break
13: else
14: if ∃ s ∈ current.children : counts[i] =

s.count then
15: parent← current
16: current← s
17: i← i + 1
18: else
19: break
20: return 〈current , parent , i〉
Algorithm 2: Function which synchronizes a form
encoded as a count-vector (read the text for more)
and a tree-count.

1a)

case 1

α o

β

1parent

current

1b)

case 2

α o

β s

γ

1

1parent

current

1c)

case 2

α o

β s

γ u

δ

1

1

1parent

current

1d)

case 2

α o

β s

γ u

δ p

a

1

1

1

1parent

current

2a)

case 3

α o

β s

γ u

δ p

a

b

1

1
2

1

1

parent

current

3a)

case 4

α o

ε d

ζβ s

γ u

δ p

a

b

1

0
2

1
2

1

1

parent current

3b)

case 2

α o

ε d

ζ s

c

β s

γ u

δ p

a

b

1

0
2

11
2

1

1

parent

current

Figure 6: Step-by-step Growing of a tree-count, assuming the order: o < d < s < u < p . parent and
current are represented after the corresponding call to insert. The first form added is soup , 〈1, 0, 1, 1, 1〉,
which involves steps 1a) to 1d). The second form added is sos , 〈1, 0, 2, 0, 0〉, corresponding to step 2a). The
last form added is odds , 〈1, 2, 1, 0, 0〉, which corresponds to steps 3a) and 3b).

that form. Lines 14 to 17 control the descent in the
tree-count by simply verifying that the current count
(counts[i]) equals the count of one child of the cur-
rent node being visited (current).13 Lines 6-7 check
that we do not visit the tree-count too further down,
and lines 8-10 deal with 0-count symbols (that are
encoded in the tree-count only when needed).

At the end of a call to search, current points to
the first node which is not consistent with the form
being added, parent points to its mother node, and i
is the index in the count-vector which identifies the
new symbols to be added in the tree-count.

Four cases can happen when growing a tree-
count, which are illustrated in Figure 6. The first
case (lines 3 to 8) in Algorithm 3, corresponds to
the case where the tree-count is empty. For in-
stance, when adding the form soup in an empty tree-
count, the call insert(〈1, 0, 1, 1, 1〉, 0) creates the

13In practice, the children of a node are sorted by count val-
ues, which allows to speed up the match. Hashing the children
of a node should offer faster runtime, at the expense of memory.

tree-count shown in step 1a) of Figure 6. The sec-
ond case (lines 9 to 15) corresponds to the normal
case where the current symbol visited (counts[i])
is new and must be added to a leaf node. This is
for instance the case for all the remaining symbols
of the form soup , as shown in steps 1b) 1c) and
1d). The third case (lines 16-20) is almost sim-
ilar to the second one. It corresponds to the sit-
uation where the symbol A(i) already labels the
current node (current.index = i) but the count
counts[i] has not been encountered in that node.
The forth and last case (lines 21 to 32) happens
when the symbol being visited in the count-vector
(A(i)) is lower than the one pointed by the current
node (current.index). This happens in our exam-
ple, when odds is added in the tree-count. More pre-
cisely, when the call insert(〈1, 2, 1, 0, 0〉, 1) is ac-
complished, as d precedes s in the alphabet. Some
reorganization of the current node must be accom-
plished. This is illustrated in step 3a) of Figure 6.

1: function insert(counts, ic)
2: count← counts[ic]
3: if τ = nil then
4: if count 6= 0 then
5: τ ← 〈ic,#,#,#〉
6: add(τ, 〈#, count,#,#〉)
7: current← τ.children(1)
8: parent← τ
9: else if current.index = # then

10: if count 6= 0 then
11: current.index← ic
12: n← 〈#, count,#,#〉
13: add(current, n)
14: parent← current
15: current← n
16: else if current.index = ic then
17: n← 〈#, count,#,#〉
18: add(current, n)
19: parent← current
20: current← n
21: else if count 6= 0 then
22: n1 ← 〈ic, current.count,#,#〉
23: current.count← 0
24: add(n1, current)
25: n2 ← 〈#, count,#,#〉
26: add(n1, n2)
27: if parent = nil then
28: τ ← n1

29: else
30: parent.children(x)← n1

31: parent← n1

32: current← n2

33: return
Algorithm 3: Insertion of a node labeled by symbol
A(ic) with count counts[ic].

Retrieval in a tree-count
The retrieval of all the pairs of forms 〈y, z〉 in the
tree-count, that satisfy a set of constraints on counts
is given in Algorithm 4. To take one concrete exam-
ple of what it accomplishes, imagine we are looking
for the pairs of forms in the tree-count of Figure 2
that contain altogether exactly 3 occurrences of the
symbol o , 2 of the symbol s , 1 of the symbol l , and
no other symbol. Starting from the root node with o ,
there is only one pair of nodes that satisfy the con-
straint on o:14 the frontier is therefore {(δ, γ)}. The
constraint on s leads to the frontier {(m, ι)} (since
the count of t must be null, which forces the first
child of node δ to be selected first). Finally, descend-
ing node ι leads to the frontier {(m, (e, j))} which
identifies the pairs (os, solo) and (os, oslo) to be the
only ones satisfying the set of constraints.

Again, if the traversal of the tree-count is con-
ceptually simple, its implementation requires some
care. There are several situations that can happen
when we want to identify two forms that contain a
given number of symbol s . The two nodes being
visited might be labeled by the same symbol s (lines
6-7), in which case the counts of symbol s will be
looked at in both nodes’ descendants. It might hap-
pen that only one of the visited node is labeled by s
(lines 8-11 and 12-15) in which case this is the node
in which the count of symbol s will be looked at.
Algorithm 4 traverses the tree-count until the fron-
tier becomes empty (in which case there is no pair
of forms that satisfy the constraints on counts) or all
the constraints are satisfied, in which case the carte-
sian product of all the forms encoded by the nodes
in the frontier will be returned (line 19). In practice,
there are some subtleties involved when encoding
the traversal of a tree-count. In particular, some in-
ternal nodes might contain forms of the input space
that must be taken care of while building the frontier.
For the sake of clarity, we do not detail the extra bur-
den it causes.

Checking for an analogy
Finally, Algorithm 5 reproduces the algorithm pro-
posed by Stroppa (2005)[p. 87]. It is worth noting
that we worked in this study with the definition of

14One form must be picked from the forms reachable from
the node γ and will contain 1 symbol o , the other must be se-
lected from the node δ and will contain 2 symbols o .

In: τ , a tree-count; counts, a count-vector
Out: frontier, the set of pairs of forms in τ that

satisfy counts
1:

2: frontier ← {(root(τ), root(τ))}
3: while (i < |A|) and (frontier 6= φ) do
4: res← φ
5: for all (p1, p2) ∈ frontier do
6: if p1.index = p2.index = i then
7: res← res ∪ cprod(p1, p2, counts[i])
8: else if p1.index = i then
9: s← p1.children(j) such that:

10: p1.children(j).count = counts[i]
11: res← res ∪ {(s, p2)}
12: else if p2.index = i then
13: s← p2.children(j) such that:
14: p2.children(j).count = counts[i]
15: res← res ∪ {(p1, s)}
16: else if counts[i] = 0 then
17: res← res ∪ {(p1, p2)}
18: frontier ← res
19: return {(f1, f2) ∈ I2 : f1 ∈ p1.forms, f2 ∈

p2.forms, (p1, p2) ∈ frontier}
Algorithm 4: Retrieval of the pairs satisfying
a set of constraints expressed by a vector-
count. The operator cprod(n, m, c) returns
the set {(m.children(i), n.children(j)) :
m.children(i).count + n.children(j).count =
c)}.

a formal analogy proposed by Stroppa and Yvon
(2005). With other definitions, such as the one pro-
vided by Lepage (1998), a much faster routine can
be designed for checking an analogy.15

In: x,y,z,t
Out: [x : y = z : t]

a(i,j,k,l)← false , if i, j, k or l < 0
for i← 0 to |x| do

for j← 0 to |y| do
for k← 0 to |z| do

for l← 0 to |t| do
if i = j = k = l then

a(i,j,k,l)← true
else

a(i,j,k,l)←

or

a(i-1,j-1,k,l) and x[i] = y[j]
a(i-1,j,k-1,l) and x[i] = z[k]
a(i,j-1,k,l-1) and t[l] = y[j]
a(i,j,k-1,l-1) and t[l] = z[k]

return a(|x|, |y|, |z|, |t|)
Algorithm 5: Algorithm given by Stroppa
(2005)[p. 87] for checking an analogical relation be-
tween four terms.

References
David A. Aha. 1997. Editorial. Artificial Intelligence

Review, 11(1-5):7–10. Special Issue on Lazy Learn-
ing.

Etienne Denoual. 2007. Analogical translation of
unknown words in a statistical machine translation
framework. In Machine Translation Summit, XI,
Copenhagen, Sept. 10-14.

Philipp Koehn and Christof Monz, editors. 2006. Pro-
ceedings on the Workshop on Statistical Machine
Translation. Association for Computational Linguis-
tics, New York, June.

Philipp Koehn, Franz-Joseph Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of the Human Language Technology Conference
(HLT), pages 127–133.

15We sticked to the definition of Stroppa and Yvon (2005)
in this work because it is more general than the one of Lepage
(1998), which means in practice that the solver we developed
sometimes produces (good) solutions that the algorithm of Lep-
age (1998) misses.

Philippe Langlais and Alexandre Patry. 2007. Trans-
lating unknown words by analogical learning. In
EMNLP-CoNLL, pages 877–886, Prague, Czech Re-
public, June.

Philippe Langlais and François Yvon. 2008. Scaling up
analogical learning. In Proceedings of the 22nd In-
ternational Conference on Computational Linguistics
(COLING 2008), pages 49–52, Manchester, UK.

Philippe Langlais, François Yvon, and Pierre Zweigen-
baum. 2008. An analogical learning approach to
translating uniterms. Technical report, Télécom Paris,
France.

Yves Lepage and Étienne Denoual. 2005. Purest ever
example-based machine translation: Detailed presen-
tation and assessment. Machine Translation, 29:251–
282.

Yves Lepage and Adrien Lardilleux. 2007. The GR-
EYC Machine Translation System for the IWSLT
2007 Evaluation Campaign. In IWLST, pages 49–53,
Trento, Italy.

Yves Lepage, Julien Migeot, and Guillerm Erwan. 2007.
Analogies of form between chunks in japanese are
massive and far from being misleading. In 3rd Lan-
guage & Technology Conference: Human Language
Technologies as a Challenge for Computer Science
and Linguistics, Poznań, Poland.

Yves Lepage. 1998. Solving analogies on words: an al-
gorithm. In COLING-ACL, pages 728–734, Montreal,
Canada.

Don A B Lindberg, Betsy L Humphreys, and Alexa T.
McCray. 1993. The Unified Medical Language Sys-
tem. Methods of Information in Medicine, 32(2):81–
91.

Vitto Pirrelli and Francois Yvon. 1999. The hidden
dimension: a paradigmatic view of data-driven NLP.
Journal of Experimental & Theroretical Artifical In-
telligence, 11:391–408.

Nicolas Stroppa and François Yvon. 2005. An analogi-
cal learner for morphological analysis. In 9th Conf. on
Computational Natural Language Learning (CoNLL),
pages 120–127, Ann Arbor, MI, June.

Nicolas Stroppa. 2005. Définitions et caractérisations de
modèles à base d’analogies pour l’apprentissage au-
tomatique des langues naturelles. Ph.D. thesis, ENST,
Paris, France, Nov.

Dépôt légal : 2008 – 4

ème
 trimestre

Imprimé à l’Ecole Nationale Supérieure des Télécommunications – Paris
ISSN 0751-1345 ENST D (Paris) (France 1983-9999)

TELECOM ParisTech

Institut TELECOM - membre de ParisTech

46, rue Barrault - 75634 Paris Cedex 13 - Tél. + 33 (0)1 45 81 77 77 - www.telecom-paristech.frfr

Département INFRES

©

In
st

it
u
t

T
E

L
E

C
O

M
 -

T
é

lé
c
o
m

 P
a

ri
s
T

e
c
h

 2
0
0
8

