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Une approche a contrario pour la mise en
correspondance de descripteurs locaux

Julien Rabin, Julie Delon, et Yann Gousseau
Institut TELECOM, TELECOM ParisTech, CNRS LTCI

{rabin,delon,gousseau}@telecom-paristech.fr

Résumé :

Dans ce rapport, nous nous intéressons au problème de la mise en correspondance de points d’intérêt entre des images. Étant
donné un ensemble de descripteurs requêtes et une base de données de descripteurs candidats, le but est de décider quels sont
les descripteurs que l’on doit mettre en correspondance entre ces deux ensembles. La résolution de ce problème est cruciale
puisqu’on le rencontre dans nombre d’applications de vision par ordinateur, telles que la détection et reconnaissance d’objet,
ou bien l’appariement d’images par exemple. En pratique cette étape de mise en correspondance est souvent réduite à un seuil
prédéterminé sur la distance euclidienne entre la requête et son plus proche voisin.

La première contribution de notre approche est l’utilisation d’une distance robuste entre les descripteurs, se basant sur
l’adaptation de la distance de transport EMD (Earth Mover’s Distance) aux histogrammes circulaires. Nous montrons que
cette distance est plus performante que les distances classiques utilisées pour comparer des descripteurs de type SIFT, tout
en restant possible à mettre en oeuvre du point de vue calculatoire. Nous proposons ensuite un nouveau critère de mise en
correspondance se basant sur une méthode a contrario. Il permet de définir de manière automatique des seuils de validation
des mises en correspondance, en fonction de chaque requête et de la diversité de la base de données. Cette méthode permet
également la détection d’occurences multiples tout en limitant le nombre de fausses alarmes. Ses performances sont testées
sur une large base d’images à l’aide de différents protocoles expérimentaux.
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A Statistical Approach to the Matching of Local
Features

Julien Rabin, Julie Delon, and Yann Gousseau
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{rabin,delon,gousseau}@telecom-paristech.fr

Abstract—This paper focuses on the matching of local features
between images. Given a set of query descriptors and a database
of candidate descriptors, the goal is to decide which ones should
be matched. This is a crucial issue, since the matching procedure
is often a preliminary step for object detection or image matching.
In practice, this matching step is often reduced to a specific
threshold on the Euclidean distance to the nearest neighbor.

Our first contribution is a robust distance between descriptors,
relying on the adaptation of the Earth Mover’s Distance to
circular histograms. It is shown that this distance outperforms
classical distances for comparing SIFT-like descriptors, while its
time complexity remains reasonable. Our second contribution is
a statistical framework for the matching procedure, which yields
validation thresholds automatically adapted to the complexity
of each query descriptor and to the diversity and size of the
database. The method makes it possible to detect multiple
occurrences, as well as to deal with situations where the target
is not present. Its performances are tested through various
experiments on a large image database.

Index Terms—Statistical analysis of matching processes, local
feature matching, dissimilarity measure, Earth Mover’s Distance,
a contrario.

I. INTRODUCTION

THE matching of common structures between digital im-
ages is an important issue for a large number of com-

puter vision applications: finding correspondences between
images of the same scene [1], image classification [2], image
and video retrieval [3]–[5], image stitching [6], [7], stereo
vision [8], [9], object detection [10] and recognition [11],
[12], and 3D object modeling [13]. One of the most classical
approaches to this problem consists in using local features
around interest points or regions. The locality of the features
ensures robustness to occlusion or context change, while the
coding of the features should be invariant or robust to various
geometrical and radiometrical changes. Numerous local ap-
proaches have been proposed in the literature, the exhaustive
study of which is beyond the scope of the present paper. In
two relatively recent comparative studies [14], [15], the SIFT
descriptor [11] has proven to be one of the most robust and
invariant representation methods. As a result, the problem of
finding correspondences between images often boils down to
the matching of such local features. Nevertheless, whereas the
extraction and representation of local descriptors has been
thoroughly studied (see e.g. the references in [14]), their
matching has not been the object of a systematic study. In
practice, the matching step relies on simple but somehow
limited procedures, as detailed further in the paper.

In many applications, this matching procedure is yet a
crucial preliminary step. It can for instance be used as a pre-
processing stage (before resorting to some geometric consis-
tency algorithm like RANSAC [5], [6], [16] or some mean
square error minimization [11]) for finding common objects
between images. The matching step is at the core of many
recent methods relying on image similarities, see e.g. [3], [5]–
[9], [11]–[13], [16]–[20]. At this point, it is worth noticing that
this matching step can serve to localize common structures
between images, but also to decide whether a structure is
present. In fact, this is a crucial issue since a computer vision
system has to deal with situations where the object of interest
is not present. In such cases, it is of great interest to be able
to limit the number of false matches, especially in the case of
very large databases, see e.g. [3].

Now, as pointed out in [15],

Important aspects of matching are metrics and
criteria to decide whether two features should be
associated, and data structures and algorithms for
matching efficiently.

Indeed, matching features involves two important steps:

• the choice of a dissimilarity measure between features;
• the choice of a matching criterion, used to decide which

matches are valid.

The dissimilarity measure should provide relevant com-
parisons between features and should be robust enough to
cope with small variations of these features. The matching
criterion should adapt itself to the complexity and diversity
of the features. These two aspects (dissimilarity measure and
matching criterion) are at the core of this paper. Our first con-
tribution is a dissimilarity measure relying on the adaptation of
the Earth Mover’s Distance [21] to circular histograms. This
measure is proven to behave well with respect to histogram
quantization and to outperform classical bin-to-bin distances
in the framework of local features comparison. Our second
contribution is a matching criterion relying on a statistical
framework. This criterion provides thresholds which adapt to
the complexity of the features and allow multiple detections
over a database, while controlling the total number of matches.
In particular, this criterion deals well with situations where
we do not know whether the object of interest is present,
as will be demonstrated by a specific experimental protocol.
Conference proceedings versions of this work have appeared
in [22] (dissimilarity measure) and [23] (matching criterion).
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A. Related works

Dissimilarity measure: As previously mentioned, the choice
of a metric is fundamental for the matching of local features.
Indeed, the matching criteria that are commonly used (as
detailed in the next paragraph) directly rest on a thresholding
of the similarity score.

The most classical local features, such as SIFT [11], reduce
the geometrical information to one-dimensional circular his-
tograms of local orientations. Usually, “bin-to-bin” distances,
such as the Euclidean distance [3], [5], [11], [14], [15] or
the χ2 distance [10], [19], are considered as the simplest way
to quickly measure the dissimilarity between such histograms
at a low computational cost. The term “bin-to-bin” refers to
the fact that, to compare two histograms, each bin of the first
histogram is compared exclusively to the bin of same rank
of the second histogram. These distances are obviously not
robust to histogram quantization. Therefore, one has to choose
the number of bins to reach a good compromise between
discriminative power and robustness of the comparison. For
instance, the number of bins of gradient orientation histograms
for original SIFTs [11] is limited to N = 8.

Bin-to-bin distances are intrinsically limited since they
only compare the intensity of modes and not their relative
positions. This limitation can be overcome by using cross-
bin distances. A classical cross-bin distance, the Mahalanobis
distance, requires the computation of the covariance matrix of
descriptors over a training database. This distance has been
used in the context of local features comparison, but without
meaningful gain: as pointed out in [15], although the Maha-
lanobis distance is more general than the Euclidean distance,
most relative performances were not modified. Other cross-bin
distances, such as the so-called quadratic distance [24] or the
diffusion distance [25], rely on smoothings of the histograms.
These methods necessitate non-trivial parameter adjustments,
such as the choice of a kernel or the scale of smoothings.

The Earth Mover’s Distance, proposed by Rubner et al. [21]
and often used to compare image signatures, is probably one
of the most elegant and robust ways of comparing histograms.
However, it is computationally far more expensive than bin-
to-bin distances when the dimension of histograms becomes
strictly greater than one. A nice variant of this distance
has been proposed by Ling et al. [26] as a way to speed
up the comparison. This distance is applied in [26] to the
comparison of local features. However, this measure remains
too expensive to be applied to the matching problem when the
number of features increases (as will be detailed in Section II)
and does not explicitely address the circularity of orientation
histograms.

These limitations led us to propose a new dissimilarity
measure, called CEMD, specifically designed to compare one-
dimensional circular histograms (see Section II). This measure,
based on the Earth Mover’s Distance, is computationally
efficient and deals with circular histograms, such as orien-
tation histograms in SIFT descriptors [11] for instance. In
the experimental section, CEMD is used for the comparison
of SIFT descriptors. This distance is shown to be more robust
to quantization effects and small geometric perturbations than

bin-to-bin distances.
Matching criterion: In order to introduce the most classical

criteria that are used to match local descriptors, it is useful
to give some vocabulary and notations that will be used
throughout this paper. We consider a situation where one seeks
for correspondences between NQ query descriptors {ai} and
a database of NC candidate descriptors {bj}. We assume that
distances have been computed between each ai and each bj .
This step can sometimes be replaced by approximate allocation
algorithms, as in [27]. Two different criteria are used in
practice to validate matches, as detailed in [14], [15], both
relying on user-selected thresholds. Ideally, these thresholds
should be set automatically and should depend on both the
query and candidate descriptors.

The simplest matching criterion, that we call DT (Distance
Threshold), relies on a global threshold on distances. That is,
each query ai is simply matched with candidates {bj} that
are at a distance d(ai, bj) smaller than the threshold. Usually,
matches are restricted to the nearest neighbor [7], [17] for each
query descriptor, in order to limit multiple false detections
that often affect some query descriptors. We will refer to this
criterion as NN-DT (Nearest Neighbor Distance Threshold).
Three main drawbacks inherent to this approach restrict its
use in practice. First, the nearest neighbor restriction limits
the number of correct matches so that, in some applications,
one prefers to select the K nearest neighbors: K = 3 in [12],
K = 4 in [6] for image stitching, and K between 5 and
10 in [5]. The price to pay is then a higher proportion of
false matches. Secondly, the nearest neighbor restriction is also
problematic in cases where there are multiple occurrences of
the structure of interest, for instance when the target object
is present more than once in the database (see for instance
[28]), when dealing with objects having repetitive parts, such
as buildings (this issue is studied in [20]), or when the interest
point detector yields spurious repetitions of the structure to
be coded. Lastly, the great variability of distances between
descriptors from images to images (as shown in Section IV)
makes it particularly difficult to set the right threshold for a
particular application.

In order to reduce the variability of the chosen threshold,
Lowe [11] introduces another criterion by comparing the dis-
tances between ai and its closest and second-closest neighbors
respectively. If the ratio between the two distances is below a
threshold r, the match with the closest neighbor is validated.
This popular criterion, that we call NN-DR (Nearest Neighbor
Distance Ratio), benefits from its simplicity and the fact that
it is by far more robust than a simple threshold on distances.
However, the choice of the “optimal” threshold r is strongly
dependent on both the application and the database: r = 0.8
in [11], r = 0.6 in [3], r = 0.95 in [16], or r between 0.56
and 0.7 in [15] for instance. In practice, the NN-DR criterion
behaves very well (and in particular significantly better than
the NN-DT criterion as shown in [15]) when the target to be
matched is present exactly once in the candidate database.
Indeed, in this case, it makes sense to assume that the distance
to the nearest neighbor is small compared to distances to other
candidates and in particular to the second nearest neighbor.
Now, the reason why this criterion should work when the
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structure of interest is not present is less clear. This situation
will be considered in the experimental section. It is of great
practical importance, because in real situations a computer
vision system relying on the matching of local features has to
deal with situations when the target is present as well as with
situations when the target is missing. Moreover, this criterion
is by nature limited to the nearest neighbor, and, as NN-DT,
may fail in the case where the structures of interest appear
more than once, as already mentioned.

Several variants of these matching criteria have been pro-
posed. In [29], it is suggested to adapt the NN-DR criterion
by averaging the distance to the second neighbor over several
images for panorama stitching. In [9], a variant of NN-DT
consists in keeping only matches (a, b) for which a is also the
nearest neighbor of b. More specific matching criteria with
geometric constraints have been proposed (see e.g. [13], [18],
[20], [30]), but to the best of our knowledge, no generic pro-
cedure for the matching of local, SIFT-like features has been
proposed beyond the aforementioned thresholds on distances.

In this paper, we propose in Section III an alternative
matching criterion relying on adaptive thresholds. Matches
between the query and candidate descriptors are validated by
rejecting casual matches, that is matches that can be produced
by chance. Similar ideas are present in works dealing with
the statistical analysis of object recognition processes [31],
[32]. Specifically, we resort to an a contrario methodology,
first introduced in [33] and then applied, among other things,
to shape matching [34]. This approach provides thresholds on
the dissimilarity measure that adapt to the query and candidate
descriptors. This matching procedure also allows multiple
detections over a database, while controlling the total number
of matches, in particular in cases where the structure of interest
is not present.

B. Outline

In Section II, we introduce the new transportation distance
for comparing local descriptors, CEMD. Then in Section III,
the matching criterion relying on the a contrario methodology
is introduced. In Section IV the advantages of both contribu-
tions over classical approaches are demonstrated on an image
database through the use of several experimental protocols.

II. DISSIMILARITY MEASURE

In this section, we introduce a dissimilarity measure de-
signed to compare circular histograms (such as orientation
histograms). This measure is a generalization of the classical
Earth Mover’s Distance to the circular case. It can also be
seen as an application of the statistical Mallows distance to
probability distributions on the unit circle. We then explain
how to apply this measure to compare local, SIFT-like features.

A. Circular Earth Mover’s Distance (CEMD)

Consider two discrete circular1 histograms f = (f [i])i=1...N

and g = (g[i])i=1...N , sampled on N bins. Both histograms are

1Circular means that the first and the last bins of the histogram are
neighbors.

supposed to be normalized, that is,
∑N

i=1 f [i] =
∑N

i=1 g[i] =
1.

The Earth Mover’s Distance between f and g is then defined
in [21] as

EMD(f, g) := min
(αi,j)∈M

N∑
i=1

N∑
j=1

αi,jc(i, j), (1)

where

M = {(αi,j); αi,j ≥ 0,
∑

j

αi,j = f [i],
∑

i

αi,j = g[j]}

and where c(., .) is a ground distance between bins. For
circular histograms, this ground distance can naturally be
chosen as

c(i, j) =
1
N

min(|i− j|, N − |i− j|), ∀(i, j) ∈ {1, . . . N}2.

The distance EMD(f, g) can be understood as a transporta-
tion cost. The value c(i, j) measures the cost of moving a
unit mass from bin i to bin j, and αi,j is the amount of
mass carried from i to j. This definition can be used in any
dimension. However the computation of the Earth Mover’s
Distance involves heavy computations when the dimension of
histograms becomes larger than two. Note that this distance
is known by statisticians as the Mallows distance between
probability distributions [35], and is also one of the Monge-
Kantorovich distances, defined in the mass transportation
theory [36].

Now, for non-circular and one-dimensional histograms,
when the ground distance is chosen as c(i, j) = 1

N |i− j|, it is
well known (see for instance chapter 2 in [36] for a proof) that
EMD(f, g) equals ‖F − G‖1 = 1

N

∑N
i=1 |F [i] − G[i]|, where

F and G are the cumulative histograms of f and g, defined
as

F [i] =
i∑

j=1

f [j], G[i] =
i∑

j=1

g[j]. (2)

The generalization of this formula to circular histograms is
not straightforward. Indeed, if f is a circular histogram, one
can build as many cumulative histograms as there are bins in
f , since any bin can be chosen as a starting point to cumulate
the histogram. However, if f and g are circular and one-
dimensional, it can be shown that the (circular) Earth Mover’s
Distance between them equals

CEMD(f, g) = min
µ∈[−1,1]

‖F −G− µ‖1 (3)

=
1
N

min
µ∈[−1,1]

∑
i

|F [i]−G[i]− µ|, (4)

where F and G are defined as in Formula 2. Observe that this
minimum is very easy to compute. Indeed, the function µ 7→∑

i |F [i]−G[i]−µ| reaches its minimum at a (not necessarily
unique) median of the values F [i] − G[i], i = 1, . . . N . It
follows that

CEMD(f, g) =
1
N

min
k∈{1,...N}

∑
i

|F [i]−G[i]− F [k] + G[k]|.

(5)
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Observe also that Formula 3 remains valid if F and G are
replaced by two cumulative histograms of f and g starting
from another bin. Any starting bin can be chosen and the
result does not depend on this choice.

We now establish an alternative formula for CEMD(f, g).
For this, we define Fk and Gk, the cumulative histograms of
f and g starting at the kth quantization bin. For each k in
{1, . . . , N}

Fk[i] =



i∑
j=k

f [j] if i ≥ k

N∑
j=k

f [j] +
i∑

j=1

f [j] if i < k

.

The definition is similar for Gk by replacing f by g. Then,
Fk[i] = F [i]−F [k−1] if i ≥ k (with the convention F [0] = 0)
and Fk[i] = F [i] + 1− F [k− 1] if i < k. Thus, by observing
that F [0]−G[0] = F [N ]−G[N ] = 0,

CEMD (f, g)

=
1

N
min

k∈{1,...N}

X
i

|F [i] − G[i] − F [k] + G[k]|

=
1

N
min

k∈{1,...N}

X
i

|F [i] − G[i] − F [k − 1] + G[k − 1]|

=
1

N
min

k∈{1,...N}

X
i

|Fk[i] − Gk[i]|.

Finally,

CEMD(f, g) = min
k∈{1,...N}

‖Fk −Gk‖1. (6)

This means that the distance CEMD(f, g) is also the mini-
mum in k of the L1 distance between Fk and Gk, the cumu-
lative histograms of f and g starting at the kth quantization
bin.

B. Comparing SIFT-like features

In this section, we first briefly recall the classical way to
compare SIFT-like features by using bin-to-bin distances, and
then explain how to apply the CEMD introduced in the previous
section to the comparison of such local features.

Let us recall [11], [14] that a SIFT-like descriptor a con-
sists of M circular histograms am of gradient orientations,
weighted by the gradient magnitude and computed for different
subregions of a location grid around an interest point. Thus,
the comparison of two descriptors a and b boils down to the
comparison of circular histograms am and bm. We suppose
here that each histogram is quantized to N bins and that the
whole descriptor a = (a1, . . . , aM ) is normalized to have unit
weight [11].

1) Bin-to-bin distances: The most classical way to compare
SIFT-like descriptors is simply to use the Lp distance as in
Formula (7), usually with p = 2 (Euclidean distance) [11].
Applying this distance requires a global Lp normalization of
descriptors a and b. Other bin-to-bin distances that are used to
compare local features include the χ2 distance, as in [10] or
the Jeffrey divergence. The definitions of these distances in the

framework of SIFT-like descriptors are recalled in Formula (8)
and (9) respectively.

DLp(a, b) :=

(
M∑

m=1

N∑
i=1

| am[i]− bm[i] |p
) 1

p

(7)

Dχ2(a, b) :=
M∑

m=1

N∑
i=1

(am[i]− bm[i])2

am[i] + bm[i]
(8)

DJ(a, b) :=
M∑

m=1

N∑
i=1

am[i] log
(

2 am[i]
am[i] + bm[i]

)
+ bm[i] log

(
2 bm[i]

am[i] + bm[i]

) (9)

2) Applying CEMD to local features: Two descriptors a =
(a1, . . . , aM ) and b = (b1, . . . , bM ) are compared by applying
CEMD to each pair of histograms am and bm using For-
mula (3) or (6). Theoretically, this distance should be applied
to normalized histograms. In practice, however, it is by far
more robust to globally normalize SIFT-like descriptors to unit
weight (as shown in [11]) than to normalize each histogram
am individually. This means that we need to compute distances
between histograms of different weights. Now, Formula (6)
and (3) are not equivalent anymore in this case. We use
preferably Formula (6) which is always independent of the
choice of the origin of histograms, that is, of the choice of the
orientation values stored in the first bin. This is not the case
of Formula (3) when it is used to compare non-normalized
histograms.

Next, in order to combine distances corresponding to dif-
ferent subregions (different values of m) we choose to use the
following distance between two descriptors,

DCEMD(a, b) :=
M∑

m=1

CEMD(am, bm). (10)

Other dissimilarity measures could have been chosen (such
as
∑

CEMD(am, bm)2 or max CEMD(am, bm)). However, we
observed experimentally that the distance (10) is more robust.

3) Implementation and computational cost: Let Xk[i] =
Fk[i] − Gk[i] be the difference of the cumulative histograms
computed in Formula (3). Xk can be written as a function of
X1,

Xk[i] =

 X1[i] if k = 1
X1[i]−X1[k − 1] if i ≥ k > 1
X1[i]−X1[k − 1] + X1[N ] if i < k.

Consequently, computing CEMD does not require to compute
the k different cumulative histograms Fk and Gk in the
circular case. Note that X1[N ] is equal to zero when the
two histograms f and g have the same weight. Compared
to the classical L1 bin-to-bin distance, the only required extra
computation is the minimization over k of ‖Xk‖1, the L1 norm
of Xk. It follows that the complexity of the CEMD computation
is approximately N times the complexity of the Euclidean
distance computation, where N is the number of bins of each
local histogram (N = 8 for classical SIFT).
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Observe that in [26], Ling and Okada present an inter-
esting variant of the Earth Mover’s Distance, called EMD-
L1, designed to speed up the computation of EMD in the
multidimensional case. Among their experiments, they show
an application of their distance to SIFT descriptors, considered
as three dimensional histograms (coding both orientation and
localization). Nevertheless, this distance remains too expensive
to be applied to large descriptors databases: EMD-L1 is empiri-
cally 720 times slower than computing the Euclidean distance,
according to Table VII in [26]. As an order of magnitude,
performing the same evaluation as the one to be done in
Section IV with EMD-L1 would require more than one year
on a standard 2.5 GHz computer.

III. A contrario MATCHING CRITERION

In this section, we introduce a generic way to compute
matching thresholds in the framework of local, SIFT-like
descriptors. Recall that we consider NQ query descriptors {ai}
and NC candidate descriptors {bj}. The question is then: for
each ai, to which bj (if any) should it be matched ? To answer
this question, we rely on the general principle of a contrario
methods and fix matching thresholds that ensure the rejection
of casual matches.

A. A contrario methodology

The general principles of a contrario methods have first
been proposed by Desolneux et al. [33] in order to detect
alignments. The same principles have then been applied to a
wide variety of computer vision tasks, such as the detection
of contrasted edges, good continuation, vanishing points, rigid
transforms or motion, see the recent monograph [37]. The
main idea, presented in a generic manner in [38], is to
detect groups of features that are very unlikely under the
hypothesis that these features are independent. This hypothesis
is called the null hypothesis in this paper. Loosely speaking,
the detected groups are those that cannot result from chance.
The second important point of a contrario methods is that to
compute the degree of unlikeliness of a group, one predicts
the expected number of groups under the null hypothesis, and
not the (generally intractable) probability of existence of the
group, see [37].

Recently, this methodology has been adapted to the problem
of shape matching [34]. Again, the main idea is to reject
matches that could have occurred by chance. Similar ideas
are present in studies dealing with the statistical analysis
of matching processes [31], [32], [39], in particular when
predicting the number of false alarms. One difference is
that these studies are more elaborated, but also less generic,
because the analysis of the matching process relies on some
shape model. When using a contrario approaches, one only
needs a distance and an independence assumption (the null
hypothesis) to validate matches. In the next two paragraphs,
this methodology is adapted to the matching of SIFT-like
features.

B. The null hypothesis

Recall that each descriptor ai is made of M orientation
histograms, ai = (ai

1, . . . , a
i
M ). In order to define the null

hypothesis, we assume that the distance between two descrip-
tors ai and b can be written as D(ai, b) =

∑M
m=1 d(ai

m, bm).
Observe that this is a very mild assumption, satisfied for
classical bin-to-bin distances (Euclidean, Manhattan or χ2),
as well as for the Circular Earth Mover’s Distance, CEMD,
introduced in this paper. Given a random descriptor b, we then
define the following null hypothesis,
Hi

0: “d(ai
m, bm) (m ∈ {1, . . . M}) are mutually indepen-

dent random variables”.
Under this hypothesis, the probability that the distance

between ai and b is smaller than a given threshold δ is

P
(
D(ai, b) ≤ δ |Hi

0

)
=
∫ δ

−∞

M∗
m=1

pi
m(x) dx , (11)

where ∗ denotes the convolution product and pi
m the prob-

ability density function of the random variable d(ai
m, bm).

The validity of a match will then be decided by thresholding
this probability, as explained in the next section. This in turn
yields thresholds on distances that depend on both ai and the
observed distribution of candidate descriptors.

In order to numerically compute the probability given by
Equation (11), we need to estimate the probability density
functions pi

m. For this, we simply use histograms of real-
izations of the distances over the database. That is, for each
i ∈ {1, . . . NQ} and each m ∈ {1, . . . M}, the law pi

m is
empirically estimated over the database {b1, . . . , bNC}.

C. Meaningful matches

Let us consider two descriptors ai and bj at distance
δ = D(ai, bj). We decide to match these descriptors as soon
as P(D(ai, b) ≤ δ |Hi

0) is small enough. It therefore remains
to automatically fix a threshold on this probability. Following
the general approach of a contrario methods, we choose the
threshold in order to control the average number of false
detections. Since NQNC comparisons are performed when
searching for matches between descriptors {ai} and {bj}, we
define the following threshold on distances, for a given ε > 0,

δi(ε) = arg max
δ

{
P
(
D(ai, b) ≤ δ |Hi

0

)
≤ ε

NQNC

}
.

(12)
A match between ai and some bj is then said to be ε-
meaningful if D(ai, bj) ≤ δi(ε).

The reason behind this choice is the following: when
testing NQ queries against NC candidates satisfying the null
hypotheses, the expected number of ε-meaningful matches is
smaller than ε.

This result is a simple consequence of the linearity of
the mathematical expectation. Observe that it would have
been much more difficult to bound the probability of false
detections, since distances between different descriptors are
not necessarily independent. A more in-depth analysis of this
interesting aspect can be found in [37]. Let us also remark that
this choice of δ is actually one of the most simple approaches
to multiple testing, and is known in the statistical community
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as a Bonferonni correction [40]. In practice, for a fixed ε and
for each descriptor ai we perform the following steps

1) Probability density functions pi
m of distances dm(ai, bj)

are estimated by histograms of these distances when bj

spans the database;
2) δ 7→ P

(
D(ai, b) ≤ δ |Hi

0

)
is computed using For-

mula (11) ;
3) the threshold δi(ε) is automatically computed in function

of the value ε using Formula (12) ;
4) for each descriptor bj (j = 1, . . . , NC), ai is matched

with bj if D(ai, bj) ≤ δi(ε).
From now on, we will refer to this matching criterion as AC.
Let us now comment on this criterion. First, one needs to fix
the value of ε, that in turn yields a threshold on distances.
Since this value corresponds to an expected number of false
detections, we claim that it is much simpler to set than a
threshold on distances. Indeed, it is well known that distances
between descriptors vary very much from one descriptor to
another or one image to another, as will be illustrated in the
experimental section. Now, the threshold on distances com-
puted thanks to step 3) above depends on both the particular
descriptor at hand, ai, and the database (e.g. an image, or a set
of images) against which it is matched. This is due both to the
learning of marginals pi

m and to the fact that the number of
descriptors is taken into account by Formula (12). In particular,
one can hope that the proposed matching criterion works well
over a relatively large image database and in the presence of
distractors, as will be confirmed by the experimental section.
Last, observe also that the number of matches is not restricted
to the nearest neighbor, even though one has the possibility to
add such a restriction depending on the application.

IV. EXPERIMENTAL RESULTS

In this section, several experiments are performed on an
image database to illustrate the performances of both the
dissimilarity measure and the matching criterion introduced
in this paper. These experiments are performed on images
modified by synthetic degradations (affine transformation and
noise). We introduce several experimental protocols to illus-
trate the behavior of the proposed matching method in cases
of single or multiple occurences of the structure of interest, as
well as in the presence of distractors.

A. Experimental setup

1) Local features: In this paragraph, we briefly describe
the local features that are used for the experiments. These are
obtained in a very similar way to the original SIFTs [11]. We
first use a combined Laplace and Harris keypoint detector,
which provides a set of interest points together with their
corresponding scales. We then build a histogram of gradient
orientations in a neighborhood of each point and segment
it to obtain reference directions. A set of M = 9 circular
histograms of gradient orientations with respect to the refer-
ence direction is then built. These histograms correspond to
9 disjoint regions of the neighborhood of each interest point.
We use a polar localization grid as in [14] (a central region, 4
regions on a first ring and 4 more regions on a second ring).

2) Experimental protocols: We use several protocols to
illustrate the versatility of the proposed matching criterion:
ability to detect a structure when we know it is present exactly
once, ability to decide whether the structure is present or not
and ability to detect multiple occurrences.

The first protocol, called A → A′, consists in matching
keypoints between an image A and an image A′ obtained by
applying an affine transform and adding Gaussian noise to A
(with a standard deviation σ = 5 for 8-bit images). A match
is declared false (i.e. a false positive) or correct (i.e. a true
positive) depending on some spatial tolerance. More precisely,
and following the protocol of [14], a match between a and b is
considered as correct if the overlap error is below 50 percent.
The overlap error between a and b is defined from the ratio
between the intersection and the union of the corresponding
SIFT regions in the image A, respectively Ra and Rb:

1− (Ra ∩Rb)/(Ra ∪Rb) .

This classical protocol, A → A′, measures very simply the
behavior of a matching procedure when two images containing
exactly the same “objects” (before and after some transforma-
tions) are compared.

Now, many real computer vision systems involving a match-
ing step have to deal with situations in which the target is
not always present (e.g. the search of an object in an image
database). In order to estimate matching procedures in such
situations, we introduce another protocol called A → {A′

B .
In this protocol, the image A is first compared with the
modified image A′ and then with an image B, independent
of A (the next image in the database to be presented in the
next section). Of course, both comparisons are made using the
same thresholds. Correct and false matches between A and
A′ are defined in the same way as in the protocol A → A′.
Meanwhile, all matches between A and B are considered
as false matches. The total number of false matches is the
addition of false matches in A′ and B. A matching procedure
should be able to match A and A′ without finding too many
correspondences between A and B.

In Section IV-C2, protocol A → {A′

B will be extended by
replacing B by the entire database to be introduced in the next
section. In Section IV-D, another protocol will be introduced
to test the ability to detect multiple occurrences.

3) Performance evaluation: Performances of both the dis-
similarity measure and the matching criterion introduced in
this paper are evaluated on approximately 3.106 descriptors,
extracted from a set of 732 generic images2. The size of this
database is in the same order of magnitude as the one used
in the evaluation paper [15], containing 100 query objects and
535 irrelevant images which constitute a 105 feature set. In
this paper as in ours, an exhaustive feature comparison is
performed. The use of such a dataset is of great importance,
because performances can vary very much from an image
to another. Observe also that using much bigger datasets to
perform exhaustive comparisons would require quite heavy
computing facilities.

2Images available at: http://www.tsi.enst.fr/∼rabin/matching/
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As is usually done, for each experiment, a ROC curve shows
the ratio of correct matches as a function of the ratio of false
matches for different values of the matching threshold. More
precisely, for a given threshold, the ratios of correct matches
and false matches are defined as

correct matches ratio =
#correct matches
#possible matches

,

false matches ratio =
#false matches

#total number of matches
.

Such a curve can be obtained for each image of the database.
In order to evaluate the performances of different matching
procedures (distances and criteria) on the whole database,
thorough comparisons and analyses are made in the next
sections, relying on these ROC curves.

B. Evaluation of the dissimilarity measures

We compare here the performances of the usual L1 (Man-
hattan) distance, L2 (Euclidean) distance, Jeffrey divergence,
and χ2 distance with the performances of the proposed Cir-
cular Earth Mover’s Distance (CEMD). Since our purpose
in this paragraph is not to evaluate matching criteria, we
choose to use a simple threshold on distances restricted to the
nearest neighbor (that is, criterion NN-DT) with the A → A′

protocol. The comparison is performed for two quantization
levels (N = 8 and N = 12) of the circular histograms.

Fig. 1. Six sample images from the database and the corresponding ROC
curves. The red curve corresponds to CEMD, the blue one to the L1 distance
and the green one to the L2 distance.

Some images from the database and their associated ROC
curves are shown in Fig. 1. For the sake of clarity, only
CEMD, L1 and L2 distances are represented on these examples,
respectively in red, blue and green continuous lines, for the
value N = 12. We see on these curves that results can be

quite different from one image to the other, even though CEMD
shows better results than other distances.

Performances of the various distances are thus evaluated
on the complete database. We follow the classical protocol
used for image retrieval evaluation, see e.g. [21], and draw
average performance curves to evaluate the ability of a given
distance to retrieve correct information first. Average ROC
curves show the average ratio of correct matches as a function
of the ratio of false matches. The average correct matches ratio
is defined (see (13)) as the average of correct matches ratio for
the same given false matches ratio with each query image Ai,
weighted by its number of descriptors NQ,i, so that the larger
the number of descriptors in an image, the greater its weight
in the final average ROC curve.

average correct matches ratio =

1∑732
i=1 NQ,i

732∑
i=1

(
NQ,i

#correct matches(Ai)
#possible matches(Ai)

) (13)

Consequently, for each distance defined in Section II-B, perfor-
mances are evaluated on the database (involving approximately
25.109 descriptor comparisons). Observe that curves are quite
smooth because of this large number of comparisons.
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Fig. 2. Average ROC curves (on 732 images) and 3.1 million descriptors
for CEMD (red), L1 (blue), L2 (green), χ2 distance (magenta) and Jeffrey
divergence (black), with two different quantization levels (N = 8 for dashed
lines and N = 12 for continuous lines).

Fig. 2 clearly shows the advantage of CEMD for all quanti-
zation choices. As one could expect, this measure deals well
with the geometric deformations applied to each image which
induce slight shifts in orientation histograms. Moreover, one
observes that increasing N increases the quality of the match-
ing when using CEMD. The number of bins is therefore only
driven by computational complexity. In contrast, this is not
the case for classical bin-to-bin distances, for which using too
many bins yields inefficient comparisons between histograms.
The average ROC curve in the case of the A → {A′

B protocol
shows a similar behavior and is omitted for brevity. We will
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see in the next paragraphs that, in contrast, matching criteria
behave differently depending on the matching protocol.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

% false ratio

%
 c

or
re

ct
 r

at
io

 

 

CEMD (N=8)
EMD (N=8)
CEMD (N=12)
EMD (N=12)

Fig. 3. Average ROC curves (on 10 images) for CEMD (red) and 3-
dimensional EMD (cyan), with two different quantization levels (N = 8 for
dashed lines and N = 12 for continuous lines).

As previously mentioned in paragraph II-B2, EMD could be
used to compare descriptors considered as three dimensional
histograms (one dimension for the gradient orientations and
two for the location of the region on the polar localization
grid). We also saw that such a method involves intractable
computation times, even when using the efficient implementa-
tion proposed by Ling et al. [26]. Nevertheless, we performed
a small scale experiment comparing such a use of EMD and
the proposed CEMD on ten images from the database. The 3-
dimensional EMD makes use of a ground distance obtained
from a circular L1 distance between orientations histograms
and a L1 ground distance on the position of regions of the
descriptor. We chose to simply add these two ground distances
without trying to optimize their combination. We used the EMD
code kindly provided by Y. Rubner [21]. Firstly, this implied
computation times approximately 1000 times slower than
when using CEMD. Secondly, one observes that 3-dimensional
EMD, with this choice of ground distance, is less efficient than
CEMD.

C. Comparison of matching criteria - single match
Three matching criteria are compared in this section. All

three criteria limit matches to the nearest neighbor, but make
use of different thresholds. The first one is a threshold on
distances, called NN-DT. The second threshold acts on the ratio
between the distance to the nearest neighbor and the distance
to the second nearest neighbor, as explained in Section I-A.
This criterion will be called NN-DR. The third criterion, called
NN-AC, is the restriction to the nearest neighbor of the new
matching criterion introduced in Section III. Recall that a
threshold on distances is obtained by thresholding a probability
of false detections (see (12)). For the A → A′ protocol, (12) is
applied with NQ = NC = NA, and for the A → {A′

B protocol
with NQ = NA and NC = NA + NB . We use CEMD for all
three matching methods.

Some images and associated ROC curves are shown in
Fig. 4, both using the A → A′ protocol (second and fifth
rows) and the A → {A′

B protocol (third and sixth rows). In
these curves, the NN-AC, NN-DT and NN-DR matching criteria
are represented respectively in red, blue and green continuous
lines. As in the previous paragraph, we can see that results
can be quite different from one image pair to the other.

In order to compare the relative performances of different
matching criteria, the same decision thresholds should be used
for different query images, as is done in [15]. A global ROC
curve is thus obtained by plotting the total number of correct
matches on the whole database versus the total number of
false matches, for different threshold values. Such a curve
permits to evaluate how stable a given threshold is from one
experiment to the other. The next two paragraphs present and
interpret results on the whole database, relying on such curves,
respectively for the A → A′ and A → {A′

B protocols.

Fig. 4. Six sample images from the database and the corresponding ROC
curves. The red curves correspond to NN-AC, the blue ones to NN-DT and the
green ones to NN-DR. The second and fifth rows show the curves obtained
with the A → A′ protocol, and the third and sixth rows show the results
of the A → {A′

B protocol. Note that the relative performances of the three
criteria depend strongly on the experiment.

1) Single match. The target is present.: Global ROC curves
are displayed on Fig. 5 for the nearest neighbor criteria
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(namely NN-AC, NN-DT and NN-DR), using the A → A′

protocol. We observe that both NN-AC and NN-DR have very
similar global ROC curves, and that the NN-DT criterion is
especially unstable. In this case, the NN-AC criterion proposed
in this paper does not offer significant advantages in compar-
ison with the classical NN-DR criterion. Indeed, as explained
in Section I-A, the NN-DR criterion is well adapted to the
case where the target is present and yields excellent results in
the special case of two images A and A′ of the same scene,
containing no distractors. Let us remark that we obtain results
that are extremely close to the one shown in [15], where the
authors obtain a flat global ROC curve for the NN-DT criterion
and significant improvement with the NN-DR criterion. This
analogy between our results and the ones in [15] also confirms
the interest of using relatively large databases.
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Fig. 5. Global ROC curves (on the whole database) for different matching
criteria: NN-AC (red), NN-DT (blue) and NN-DR (green). Experimental pro-
tocol is A → A′ (an image A is matched against its transformed version
A′).

2) Single match. Is the target present ?: This section
investigates the performances of the matching criteria on the
whole database when using the A → {A′

B protocol. Fig. 6
shows the global ROC curve for this protocol. We can see that
the performances of NN-DR clearly decrease in comparison to
the ones of the proposed NN-AC criterion. For a given number
of correct correspondences between A and A′, NN-AC yields
fewer false correspondences than NN-DR. As explained earlier,
this shows the ability of the NN-AC criterion to discriminate
between cases where the target is present and cases where it
is not, which can be crucial for practical applications.

Next, we propose an extension of this last protocol where,
for each query image A, the distractor image B is replaced
by the entire database (deprived of A). Since this test involves
much more computations than the previous one, it has been
performed for only 100 images from the database (representing
approximately 1.5 1012 descriptor comparisons). Fig. 7 shows
the corresponding global ROC curve. Again, one observes
the substantial improvement provided by the NN-AC criterion.
In fact, the improvement is greater than when only one
image is used as a distractor, which suggests that the NN-AC
criterion behaves well when the object of interest is seldom
encountered.
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Fig. 6. Global ROC curves (on the whole database) for different matching
criteria: NN-AC (red), NN-DT (blue) and NN-DR (green). Experimental pro-
tocol is A → {A′

B (an image A is matched separately against A′ and an
independent image B).
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Fig. 7. Global ROC curves (on 100 images) for different matching criteria:
NN-AC (red), NN-DT (blue) and NN-DR (green). Experimental protocol is the
same as A → {A′

B , except that B is replaced by the complete database. That
is, an image A is matched separately against A′ and against each other image.

D. Comparison of matching criteria - multiple matches

This section is a first attempt to compare matching criteria
allowing multiple matching, thus not restricted to the nearest
neighbor. First, there is no obvious way to define such an
extension for the NN-DR criterion. We therefore compare the
following two criteria: a simple threshold on distances, that
we call DT and the criterion introduced in this paper (without
restricting matches to nearest neighbors), that we called AC.
Both criteria allow multiple correspondences for each query
descriptor.

For this comparison, we propose a protocol similar to
A → {A′

B , except that A′ is replaced by a single image,
called A′ + A′′, which is the concatenation of two different
transformations of A. In this experiment, each structure of
A appears twice in A′ + A′′. Correct and false matches are
counted exactly in the same way as in the protocol A → {A′

B .
This protocol is called A → {A′+A′′

B . Fig. 8 shows how the
AC criterion clearly outperforms the DT criterion on the image
database in this case of multiple matches.
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Fig. 8. Global ROC curves (on the whole database) for the A → {A′+A′′

B
protocol (the target is present twice, see Section (IV-D)). Criterion AC is
shown in red and criterion DT is shown in blue.

E. Is the nearest neighbor restriction necessary ?

Following the previous section, it is quite natural to wonder
whether not reducing the matches to the nearest neighbor
yields a loss of performance in the case where the target is
present at most once.

On Figure 9 we show, in continuous lines, global ROC
curves for the two matching criteria AC and DT using the
A → {A′

B protocol. Results for the matching criteria NN-
AC and NN-DT, previously shown in Fig. 6, are represented
in dashed lines. As could be expected, the performance of
DT decreases significantly in comparison to NN-DT. Yet, we
observe that AC and NN-AC criteria have similar results, even
though AC does not have any restriction on the number of
matches per query descriptor. This quite remarkable result
indicates that the adaptive matching criterion introduced in
this paper permits the rejection of false matches without any
restriction on the number of possible matches.
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Fig. 9. Global ROC curves (on the whole database) for different matching
criteria and for the A → {A′

B protocol. Dashed lines: matches are restricted
to the nearest neighbor (NN-AC in red and NN-DT in blue). Continuous lines:
the number of matches per query is not restricted (AC in red and DT in blue).

F. Some more experiments

In order to visually illustrate the behavior of the proposed
matching procedure, this section presents some additional
examples of matching between images.

Firstly, we show the behavior of the proposed matching
procedure using different thresholds in the case of a scene
with repetitive structures. Such a situation is common in the
case of, e.g., images of buildings. As pointed out in [20], these
are difficult correspondence problems. Classical approaches
could fail to provide enough relevant correspondences between
images of the same scene. We compare two different views of
the tower of Pisa shown in Fig. 10. Criterion NN-DR (used in
Figs. 10(e), 10(f), 10(g) and 10(h) with CEMD and respectively
r = 0.7, r = 0.8, r = 0.85 and r = 0.9) can only correctly
match a relatively low number of points while controlling the
number of false matches. Indeed, the presence of repetitive
structures can foul the NN-DR criterion because of several
candidate descriptors at a similar distance to the query. On
the contrary, using the AC matching criterion -which is not
restricted to the nearest neighbor-, results in multiple matches
between columns and arches (Figs. 10(a), 10(b), 10(c) and
10(d) with CEMD and respectively ε = 10−2, ε = 10−1, ε = 1,
and ε = 10).

Next, a single image (blue-framed) is matched separately
with 8 different images (Fig. 11(a)). Four of them contain
(one or several times) a common object with the query image
(a can). The four other images do not contain the can. The
complete matching procedure presented in this paper (CEMD
for the distance and the AC criterion) is shown in Fig. 11(b)). It
is compared to two classical matching procedures: Euclidean
distance and NN-DR criterion in Fig. 11(c) or NN-DT criterion
in Fig. 11(d). For each method, all images are matched with
the same threshold (ε = 10−2 for AC, r = 0.8 for NN-DR,
and t < 0.45 for NN-DT). These thresholds are set in such a
way as to obtain roughly the same number of correct matches
between the query image and the image at the center of the
leftmost column.

This matching experiment leads us to the same conclusions
as the previous ROC curves. The AC criterion yields much
fewer false matches on images where the object is not present
and better detection of multiple occurrences. It is also interest-
ing to notice that there are less false matches even in images
where the object is present. This is not contradictory with
the results of Section IV-C1 (concluding to the equivalence of
NN-DR and NN-AC when using the A → A′ protocol), since
many descriptors of either the query or the candidate image do
not correspond to the object shared by the two images. This
experiment shows (on a specific example) the versatility and
adaptivity (all images are matched using the same threshold)
of the proposed matching procedure.

V. CONCLUSION

In this paper, a new procedure for the matching of local,
SIFT-like features has been proposed. First, a robust dis-
tance between circular histograms has been introduced and
its advantages have been experimentally demonstrated on an
image database. Second, a statistical matching criterion has



12 PREPRINT 08/08

(a) AC, ε = 10−2 (b) AC, ε = 10−1 (c) AC, ε = 1 (d) AC, ε = 10

(e) NN-DR, r = 0.7 (f) NN-DR, r = 0.8 (g) NN-DR, r = 0.85 (h) NN-DR, r = 0.9

Fig. 10. Matching an object with repetitive structures: the tower of Pisa. Two different matching procedures are used with different thresholds: the first
row corresponds to the AC criterion and the second row corresponds to the NN-DR criterion. The first criterion permits to match the repeated elements of the
tower.

been defined, relying on a threshold on a probability of false
detections. The ability of this criterion to deal with situations
where we do not know if the target is present has been
demonstrated, as well as its ability to deal with multiple
matches.

Several extensions of this work are foreseen. First, even
though the computation of the proposed matching thresholds
is not computationally demanding (it only requires to compute
M convolutions for each query descriptor ai), it cannot benefit
in a straightforward way from fast nearest neighbor search
schemes [11], [27]. It is of interest to investigate the possibility
to approximate the probability of false detections using only
a small subset of candidate descriptors.

The distance introduced in Section II can also be applied to
other descriptors made of circular histograms, such as color

(hue) histograms. Observe also that the matching methodology
presented in Section III is completely generic and could be
applied to other local descriptors, such as the affine invariant
descriptors described in [41]. This matching methodology also
enables us to simultaneously use different local features, by
adapting the independence assumptions made in Section III.
Preliminary experiments on the joint use of color and direction
histograms show promising results.
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(a) query image and 8 images dataset (b) Distance CEMD and AC matching criterion with ε = 10−2

(c) Euclidean distance and NN-DR matching criterion with r = 0.8 (d) Euclidean Distance and NN-DT matching criterion with t < .45

Fig. 11. Comparison of different matching procedures (Distance + Matching Criterion). One query image (blue framed) containing a can is matched separately
against 8 images (Fig. 11(a)). Only half of these images contain the can, present one or several times. For each matching procedure, the query image is
compared with all 8 images using the same threshold. These thresholds are chosen such that the number of correct matches with the image at the center of
the left column is the same for all procedures. Observe that for a given number of correct matches with this left-centered image, the matching procedure
introduced in this paper (CEMD + AC criterion) yields more correct matches in other images while providing a better control of the number of false detections
than classical procedures.
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