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Abstract

We consider inference in a general data-driven object-based model of multichannel audio data, as-
sumed generated as a possibly underdetermined convolutive mixture of source signals. Each source
is given a model inspired from nonnegative matrix factorization (NMF) with the Itakura-Saito di-
vergence, which underlies a statistical model of superimposed Gaussian components. We address
estimation of the mixing and source parameters using two methods. The first one consists of
maximizing the exact joint likelihood of the multichannel data using an expectation-maximization
algorithm. The second method consists of maximizing the sum of individual likelihoods of all
channels using a multiplicative update algorithm inspired from NMF methodology. Our decom-
position algorithms were applied to stereo music and assessed in terms of blind source separation
performance.

Keywords: Multichannel audio, nonnegative matrix factorization, nonnegative tensor factoriza-
tion, underdetermined convolutive blind source separation.

Résumé

Nous considérons le problème de l’estimation de représentations objet adaptatives de données
audio multicanal, supposées générées par un mélange possiblement sous-déterminé et convolutif de
signaux sources. Chaque source est modélisée par un modèle de type factorisation en matrices non-
négatives avec la divergence d’Itakura-Saito, qui sous-tend une modélisation statistique de type
gaussienne composite. Nous proposons deux méthodes d’estimation des paramètres de mélange
et des sources. La première méthode consiste à maximiser la vraisemblance conjointe exacte
des données avec un algorithme EM. La deuxième méthode consiste à maximiser la somme des
vraisemblances individuelles de chaque canal avec un algorithme de mises à jour multiplicatives.
Nos algorithmes de décomposition sont évalués en termes de séparation de sources sur des signaux
musicaux stéréophoniques.

Mots-clés: Audio multicanal, factorisation en matrices à coefficients positifs, factorisation en
tenseurs à coefficients positifs, séparation aveugle de sources convolutive et sous-déterminée.



MULTICHANNEL NONNEGATIVE MATRIX FACTORIZATION IN CONVOLUTIVE
MIXTURES. WITH APPLICATION TO BLIND AUDIO SOURCE SEPARATION.
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ABSTRACT

We consider inference in a general data-driven object-based model
of multichannel audio data, assumed generated as a possibly under-
determined convolutive mixture of source signals. Each source is
given a model inspired from nonnegative matrix factorization (NMF)
with the Itakura-Saito divergence, which underlies a statistical model
of superimposed Gaussian components. We address estimation of
the mixing and source parameters using two methods. The first one
consists of maximizing the exact joint likelihood of the multichan-
nel data using an expectation-maximization algorithm. The second
method consists of maximizing the sum of individual likelihoods of
all channels using a multiplicative update algorithm inspired from
NMF methodology. Our decomposition algorithms were applied to
stereo music and assessed in terms of blind source separation perfor-
mance.

Index Terms— Multichannel audio, nonnegative matrix factor-
ization, nonnegative tensor factorization, underdetermined convolu-
tive blind source separation.

1. INTRODUCTION

Assume I-channel data and let xi,fn be the complex-valued STFT of
the i-th mixture (i = 1, . . . , I), where f = 1, . . . , F is a frequency
bin index and n = 1, . . . , N is a time frame index. In this paper we
assume the data to be a mixture of J sources, such that

xi,fn =
∑J

j=1
aij,f sj,fn + bi,fn, (1)

where sj,fn is the STFT of the j-th source (j = 1, . . . , J), aij,f is
a frequency-dependent complex-valued mixing coefficient and bi,fn

is residual noise. This generative model is a standard approximation
of time-domain convolution, which holds when the filter length is
assumed “significantly” shorter than the STFT window size. Eq. (1)
can be rewritten in matrix form, such that

xfn = Af sfn + bfn, (2)

where xfn = [x1,fn, . . . , xI,fn]T , sfn = [s1,fn, . . . , sJ,fn]T ,
bfn = [b1,fn, . . . , bI,fn]T and Af = [aij,f ]ij ∈ CI×J .

Many convolutive blind source separation (BSS) methods have
been designed under model (1). Typically, an instantaneous ICA
algorithm is applied to data {xfn}n=1,...,N in each frequency sub-
band f , yielding a set of J source subband estimates per frequency
bin. This approach is usually referred to as frequency-domain ICA
(FD-ICA). The source labels remain however unknown because of

This work was supported in part by the French ANR project SARAH.

the ICA standard permutation indeterminacy, leading to the well-
known FD-ICA permutation alignment problem. Many a posteriori
alignment techniques relying on various source characteristics have
been designed with various degrees of success, see e.g., [1] and ref-
erences therein. The permutation ambiguity arises from the indi-
vidual processing of each subband, which implicitly assumes mu-
tual independence of one source’s subbands. This is not the case
in this work where our frequency-dependent source model implies a
coupling of the frequency bands, and joint estimation of the source
parameters and mixing coefficients frees us from the permutation
alignment problem.

More precisely, our source model is inspired from NMF, and
more specifically from NMF with the Itakura-Saito (IS) divergence
which underlies a statistical model of superimposed latent Gaus-
sian components, as described in [2] and summarized in Section 2.
Section 3 addresses two inference methods in our proposed multi-
channel model. The first method, described in Section 3.1, consists
of maximizing the exact joint log-likelihood of the multichannel
data using an expectation-maximization (EM) algorithm [3]. This
approach draws parallels with [4, 5], where source frames are as-
signed a Gaussian mixture model (GMM). However, our NMF
model might be considered more suitable for musical signals than
the GMM, and the computational complexity of exact inference in
our model grows linearly with the number of components while the
GMM’s complexity grows combinatorially. The second method, de-
scribed in Section 3.1, consists of maximizing the sum of individual
log-likelihoods of all channels using a multiplicative update (MU)
algorithm inspired from NMF literature. This approach relates to
recent nonnegative tensor factorization (NTF) techniques applied to
multichannel music signals [6]. However, in contrast to standard
NTF which implicitly assumes instantaneous mixing, our approach
addresses a more general convolutive structure and does not require
any post-processing binding step consisting of grouping the NTF el-
ementary components into J sources. Section 4 reports BSS results
of stereo music data and Section 5 provides conclusive remarks.

2. MODELS

2.1. Sources

Let K ≥ J and {Kj}J
j=1 be a non-trivial partition ofK = 1, . . . , K.

We assume the complex random variable sj,fn to be a sum of #Kj

latent components, such that

sj,fn =
∑

k∈Kj

ck,fn with ck,fn ∼ Nc(0, wfkhkn) (3)

where wfk, hkn ∈ R+ andNc (µ,Σ) is a proper complex Gaussian
distribution with probability density function (pdf)

Nc (x|µ,Σ) = |π Σ|−1 exp−(x− µ)H Σ−1 (x− µ). (4)



The components are assumed mutually independent and individually
independent across frequency and frame. It follows that

sj,fn ∼ Nc

(
0,

∑
k∈Kj

wfkhkn

)
. (5)

Denoting Sj the F ×N STFT matrix [sj,fn]fn of source j and in-
troducing the matrices Wj = [wfk]f,k∈Kj and Hj = [hkn]k∈Kj ,n

respectively of dimensions F ×#Kj and #Kj×N , it can easily be
shown [2] that the log-likelihood of the parameters describing source
j writes

− log p(Sj |WjHj) =
∑

fn
dIS(|sj,fn|2|[WjHj ]fn) + const.

where dIS(x|y) = x/y−log(x/y)−1 is the IS divergence. In other
words, maximum likelihood (ML) estimation of Wj and Hj given
source STFT Sj is equivalent to NMF of the power spectrogram
|Sj |2 into WjHj , where the IS divergence is used. MU and EM
algorithms are respectively described in [7, 8] and [2] for this task;
in essence, this paper describes a generalization of these algorithms
to a multichannel multisource scenario. Finally, we introduce the
notation Pj = Wj Hj , i.e., pj,fn = E{|sj,fn|2}.

2.2. Noise

In the most general case, we may assume noisy data and the follow-
ing algorithms could accommodate estimation of noise statistics un-
der Gaussian independent assumptions and given covariance struc-
tures such as Σb,fn = Σb,f or Σb,n. In this paper we assume for
simplicity Σb,fn = σ2

b II , where II is the identity matrix of size I
and σ2

b is a small and fixed noise variance. The noise component can
account for both the quantization noise (if any) and possible model
discrepancy in (1), and is required to prevent from potential numeri-
cal instabilities as discussed later.

2.3. Convolutive mixing model revisited

The mixing model (2) can be recast as :

xfn = ~Af cfn + bfn (6)

where cfn = [c1,fn, . . . , cK,fn]T ∈ CK×1 and ~Af is the “ex-
tended mixing matrix” of dimension I ×K, with elements defined
by ~aik,f = aij,f if and only if k ∈ Kj . Thus, for every frequency
bin f our model is basically a linear mixing model with I channels
and K elementary Gaussian sources ck,fn, with structured mixing
coefficients (i.e., subsets of elementary sources arrive from same di-
rections). Subsequently, we will note Σc,fn = diag

(
[wfkhkn]k

)
the covariance of ck,fn.

3. METHODS

3.1. Maximization of exact likelihood with EM

3.1.1. Criterion

Let θ = {A,W,H} be the set of all parameters, where A is the
I × J × F tensor with entries aij,f , W is the F ×K matrix with
entries wfk and H is the K ×N matrix with entries hkn. Under the
previous assumptions, data xfn has a zero-mean proper Gaussian
distribution with covariance Σx,fn(θ) = AfΣs,fnAH

f + σ2
b II ,

where Σs,fn = diag ([pj,fn]j) is the covariance of sfn. ML esti-
mation is consequently shown to amount to minimization of 1

C1(θ) =
∑

fn
trace

([
xfn xH

fn

]
Σ−1

x,fn

)
+ log detΣx,fn. (7)

The noise term σ2
b II is here necessary to prevent from ill-conditioned

inverses that may occur if one diagonal term of Σs,fn is close to
zero, or if I > J .

3.1.2. Indeterminacies

Criterion (7) suffers from scale, phase and permutation indetermina-
cies. Concerning scale and phase, let θ̂ = {{Af}f , {Wj}j , {Hj}j}
be a minimizer of (7) and let {Df}f and {Λj}j be a sets of respec-
tively complex and nonnegative diagonal matrices. Then, the set
θ̃ = {{Af D−1

f }f , {diag
(
[|djj,f |2]f

)
Wj Λ−1

j }j , {Λj Hj}j}
leads to Σx,fn(θ̂) = Σx,fn(θ̃), i.e., same likelihood value. Sim-
ilarly, permuted diagonal matrices would also leave the criterion
unchanged. In practice, we remove the scale and phase ambiguity
by imposing

∑
i |aij,f |2 = 1 and a1j,f ∈ R+ (and scaling the rows

of Wj accordingly) and by imposing
∑

f wfk = 1 (and scaling the
rows of Hj accordingly).

3.1.3. Algorithm

We derive an EM algorithm [3] based on the complete data {X,C},
where C is the K × F ×N STFT tensor with coefficients ck,fn. It
can be shown that the family {p(X,C|θ)}θ is an exponential fam-
ily [3] and the complete data statistics Rxs,f =

∑
n xfnsH

fn/N ,
Rss,f =

∑
n sfnsH

fn/N and uk,fn = |ck,fn|2 form a natural (suf-
ficient) statistics [3] for this family. Thus, one iteration of EM con-
sists of computing the expectation of the natural statistics condition-
ally on the current parameter estimates (E step) and re-estimating
the parameters using the updated natural statistics, which amounts
to maximizing the conditional expectation of the complete data like-
lihood Q(θ|θ′) =

∫
log p(X,C|θ)p(C|X, θ′)dC (M step). These

steps are detailed in Algorithm 1.2

It can be easily checked that when the noise variance σ2
b tends

to zero, the resulting update rule for Af tends to Af ← Af . Sim-
ilarly, the convergence of Af is very slow for small values of σ2

b .
To overcome this difficulty we use a simulated annealing strategy
consisting of artificially and linearly decreasing the noise variance
over the iterations, from an arbitrary large value to the small, correct
value used in criterion (7).

3.1.4. Reconstruction of the sources

Wiener reconstructions of the source STFTs are retrieved from
Eq. (11). Time-domain sources may then be obtained through in-

1For a fixed f , the BSS problem described by Eq. (2) and (7), and the
following EM algorithm, is reminiscent of works by Cardoso, see, e.g, [9],
where a grid of the representation domain is chosen, in each cell of which
the source statistics are assumed constant. This is not required in our case
where we instead solve F parallel linear instantaneous mixtures tied across
frequency by the source model. In [9] the ML criterion can nicely be re-
cast as a measure of fit between observed and parameterized covariances,
where the measure of deviation writes D(Σ1|Σ2) = trace(Σ1 Σ−1

2 ) −
log detΣ1 Σ−1

2 − J and Σ1 and Σ2 are positive definite matrices of
size I × I (note that the IS divergence is obtained in the special case
J = 1). Unfortunately this formulation cannot be used in our case because
Σ1 = xfn xH

fn is singular.
2Equation (14) only ensures Q(θm+1|θm) ≥ Q(θm|θm) so that our

algorithm is strictly speaking only a generalized EM (GEM) algorithm.



Algorithm 1 EM algorithm (one iteration)

• E step. Conditional expectations of natural statistics:

R̂xs,f =
1

N

∑
n

xfnŝH
fn (8)

R̂ss,f =
1

N

∑
n

ŝfnŝH
fn + Σs,fn −Gs,fnAfΣs,fn (9)

ûk,fn =
[
ĉfnĉH

fn + (Σc,fn −Gc,fn
~AfΣc,fn)

]
k,k

(10)

where

ŝfn = Gs,fnxfn, Gs,fn = Σs,fnAH
f Σ−1

x,fn, (11)

ĉfn = Gc,fnxfn, Gc,fn = Σc,fn
~AH

f Σ−1
x,fn, (12)

with ~Af , Σc,fn, Σs,fn, and Σx,fn from Sec. 2.3 and 3.1.1.

• M step. Update the parameters:

Af = R̂xs,fR̂
−1
ss,f , (13)

wfk =
1

N

∑
n

ûk,fn

hkn
, hkn =

1

F

∑

f

ûk,fn

wfk
. (14)

• Normalize A, W and H according to Section 3.1.2.

verse STFT using an adequate overlap-add procedure with dual
synthesis window. By conservativity of Wiener reconstruction the
spatial images of estimated sources and the estimated noise sum
altogether to the original mix in STFT domain, i.e., Âf , ŝfn and
b̂fn = σ2

bΣ
−1
x,fnxfn satisfy Eq. (2). Thanks to linearity of the

inverse-STFT, the reconstruction is conservative in time domain as
well.

3.2. Maximization of individual likelihoods with MU rules

3.2.1. Criterion

We now consider a suboptimal approach consisting of maximizing
the sum of individual channel likelihoods

∑
i log p(Xi|θ), hence

discarding mutual information between the channels. This is equiv-
alent to setting the off-diagonal terms of xfn xH

fn and Σx,fn to zero
in criterion (7), leading to minimization of criterion

C2(θ) =
∑

ifn
dIS(|xi,fn|2|v̂i,fn), (15)

where v̂i,fn is the variance structure defined by

v̂i,fn =
∑

j
qij,f

∑
k∈Kj

wfk hfn (+σ2
b ), (16)

with qij,f = |aij,f |2. For a fixed channel i, v̂i,fn is basically the
sum of the source variances modulated by the mixing weights.

3.2.2. Indeterminacies

Criterion C2(θ) suffers from same scale, phase and permutations
ambiguities as criterion C1(θ), with the exception that ambiguity
on the phase of aij,f is now total as this parameter only appears
through it squared-modulus. In the following, the scales are fixed as
in Section 3.1.2.

3.2.3. Algorithm

We describe for the minimization of C2(θ) an iterative MU al-
gorithm inspired from NMF methodology. Continual descent of
the criterion under this algorithm was observed in practice. The
algorithm simply consists of updating each scalar parameter θl by
multiplying its value at previous iteration by the ratio of the neg-
ative and positive parts of the derivative of the criterion wrt this
parameter, namely θl ← θl.[∇θlC2(θ)]−/[∇θlC2(θ)]+, where
∇θlC2(θ) = [∇θlC2(θ)]+ − [∇θlC2(θ)]− and the summands are
both nonnegative [2]. This ensures nonnegativity of the parameter
updates, provided initialization with a nonnegative value. The re-
sulting parameter updates are described in Algorithm 2, where “.”
indicates element-wise matrix operations, 1N×1 is a N -vector of
ones, qij the F × 1 vector [qij,f ]f and Vi (resp. V̂i) the F × N
matrix [|xi,fn|2]fn (resp. [v̂i,fn]fn).

Algorithm 2 MU rules (one iteration)

qij ← qij .

[
V̂.−2

i .(WjHj).Vi

]
1N×1

[
V̂.−1

i .(WjHj)
]
1N×1

(17)

Wj ← Wj .

∑I
i=1 diag(qij)(V̂

.−2
i .Vi)H

T
j∑I

i=1 diag(qij)V̂
.−1
i HT

j

(18)

Hj ← Hj .

∑I
i=1(diag(qij)Wj)

T (V̂.−2
i .Vi)∑I

i=1(diag(qij)Wj)T V̂.−1
i

(19)

Normalize Q, W and H according to Section 3.2.2.

3.2.4. Reconstruction of the source images

An image sim
ij,fn of source j in channel i is reconstructed through

ŝim
ij,fn = (qij,fpi,fn/v̂i,fn) xi,fn, i.e., through Wiener filtering of

each channel. A noise component (if any) can similarly be recon-
structed as b̂i,fn = (σ2

b/v̂i,fn) xi,fn. Overall the decomposition is
conservative, i.e.,

∑
j ŝim

ij,fn + b̂i,fn = xi,fn.

4. RESULTS

4.1. Test material

We produced J = 3 musical sources (drums, lead vocals and pi-
ano) using original separated tracks from the song “Sunrise” by
S. Hurley (http://ccmixter.org/shannon-hurley). We
selected 17 seconds-excerpts, that were converted to mono and
downsampled to 16 kHz. The musical sources were mixed into a
stereo recording using filters from the Source Separation Evaluation
Campaign SiSEC 2008 development dataset3 (http://sisec.
wiki.irisa.fr/tiki-index.php). The test material, sepa-
ration results and separation examples from original CD recordings
are available at http://perso.telecom-paristech.fr/
˜ozerov/demos.html#nmf_bss.

4.2. Simulations

We have run 5000 iterations of both methods (EM and MU) from 10
random initializations of θ, with K = 12 components equally dis-

3The reverberation time is 130 ms, distance between the two microphones
is 1 m, distance between sources and the center of the microphone pair is
about 1 m and the angles of arrival are -50, -10, and 15 degrees.



tributed between the 3 sources (i.e., #Kj = 4). Figure 1 plots the
cost values C1(θ) and C2(θ) along iterations for the 10 runs. Note
that because of the simulated annealing (Sec. 3.1.3) the EM’s cost
C1(θ) is not always decreasing (C1(θ) is always computed with the
small arbitrarily fixed noise variance σ2

b , while the noise variance
used in the EM algorithm changes with iterations). However, Fig-
ure 1 shows that the final value of C1(θ) is always minimal.
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Fig. 1. 10 runs of EM and MU from random initializations. In our
MATLAB implementation, 1000 iterations of EM (resp. MU) takes
about 80 min (resp. 20 min).

Source images were reconstucted from the set of parameters ob-
tained at the end of every run and source separation evaluation crite-
ria were computed from the orignal and reconstructed images : the
Signal to Distortion Ratio (SDR), the Image to Spatial distortion Ra-
tio (ISR), the Source to Interference Ratio (SIR), and the Sources
to Artifacts Ratio (SAR) [10]. For each method and every run, all
evaluation criteria values were averaged over J = 3 sources. Ta-
ble 1 displays for each method the evaluation criteria corresponding
to 1) the best average SDR value obtained among the 10 runs, 2)
the best (i.e, minimal) cost value, along with reference values (in
braces) computed from sources estimates as reconstructed from the
corresponding randomly initialized parameters θ(0).

Algorithm EM algorithm MU rules
Condition best SDR best cost best SDR best cost
Av. SDR 4.3 (-1.0) 0.2 (-1.4) 3.6 (1.6) 0.4 (1.7)
Av. ISR 8.1 (2.4) 3.8 (2.5) 8.0 (3.5) 4.6 (3.8)
Av. SIR 6.5 (-3.1) 0.0 (-2.3) 6.9 (-2.7) 1.8 (-1.8)
Av. SAR 10.0 (9.9) 9.2 (7.6) 7.3 (15.4) 7.6 (15.0)

Table 1. Source separation evalution criteria (dB).

5. DISCUSSION AND CONCLUSION

Table 1 shows that both methods are very sensitive to initialization,
and, unfortunately, the best value of the cost does not correspond
to the best separation performance. However, the perceptual differ-
ences between the sources estimates are not always noticable, and
the numerical differences may be dued to the nature of the criteria
itself.

Moreover, among only 10 random initializations at least one is
leading to satisfying separation results. We are currently looking for
better (non-random) initialization schemes.

Let us compare the two proposed methods. As compared to
MU, the EM algorithm has the following advantages : (i) its conver-

gence to a stationary point is theoretically proved, (ii) in contrast to
the maximization of individual likelihoods, the maximization of the
exact likelihood allows to better exploit the statistical dependencies
between different channels, (iii) the EM algorithm allows for the
estimation of the complex-valued mixing coefficients, while MU
only estimate the absolute values of these coefficients.4 As com-
pared to EM, the MU algorithm has the following advantages : (i)
convergence is faster (both in iterations and CPU time), (ii) the gen-
eralization of MU to other divergences used in NMF (e.g., Euclidean
distance or Kullback-Leibler divergence) is straightforward.

The new probabilistic framework presented in this paper ad-
dresses the representation of multichannel audio, under possibly un-
derdetermined and noisy convolutive mixing. While we have as-
sessed the validity of our model (with corresponding inference tech-
niques) in terms of BSS, our model more generally provides a data-
driven object-based representation of multichannel audio and could
be relevant to other problems such as audio transcription and index-
ing. As such, it would be interesting to investigate the semantics
revealed by the learnt dictionary W and corresponding activation
patterns H; we leave this for future work.
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