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Abstract

We consider inference in a general data-driven object-based model of multichannel audio data,
assumed generated as a possibly underdetermined convolutive mixture of source signals. We work
in the Short-Time Fourier Transform (STFT) domain, where convolution is routinely approximated
as linear instantaneous mixing in each frequency band. Each source STFT is given a model inspired
from nonnegative matrix factorization (NMF) with the Itakura-Saito divergence, which underlies
a statistical model of superimposed Gaussian components. We address estimation of the mixing
and source parameters using two methods. The first one consists of maximizing the exact joint
likelihood of the multichannel data using an expectation-maximization (EM) algorithm. The
second method consists of maximizing the sum of individual likelihoods of all channels using a
multiplicative update algorithm inspired from NMF methodology. Our decomposition algorithms
are applied to stereo audio source separation in various settings, covering blind and supervised
separation, music and speech sources, synthetic instantaneous and convolutive mixtures, as well
as professionally produced music recordings. Our EM method produces competitive results with
respect to state-of-the-art as illustrated on two tasks from the international Signal Separation
Evaluation Campaign (SiSEC 2008).

Keywords: Multichannel audio, nonnegative matrix factorization, nonnegative tensor factoriza-
tion, expectation-maximization algorithm, underdetermined convolutive blind source separation.

Résumé

Nous considérons le problème de l’estimation de représentations objet adaptatives de données au-
dio multicanal, supposées générées par un mélange éventuellement sous-déterminé et convolutif
de signaux sources. Le domaine de modélisation est le domaine de la Transformée de Fourier
Court-Terme (TFCT), dans lequel la convolution peut être approchée par des mélanges linéaires
instantanés dans chaque sous-bande fréquentielle. La TFCT de chaque source est modélisée par un
modèle de type factorisation en matrices non-négatives avec la divergence d’Itakura-Saito, qui sous-
tend une modélisation statistique de type gaussienne composite. Nous proposons deux méthodes
d’estimation des paramètres de mélange et des sources. La première méthode consiste à max-
imiser la vraisemblance conjointe exacte des données avec un algorithme espérance-maximisation
(EM). La deuxième méthode consiste à maximiser la somme des vraisemblances individuelles de
chaque canal avec un algorithme de mises à jour multiplicatives. Nos algorithmes de décomposition
sont appliqués au problème de la séparation de mélanges audio stéréo, dans différentes configura-
tions : séparation aveugle et supervisée, séparation de sources musicales et de parole, mélanges
synthétiques instantanés et convolutifs, ainsi que séparation d’enregistrements musicaux profes-
sionnels produits en studio. Notre méthode EM donne des résultats compétitifs par rapport à
l’état de l’art, comme l’illustrent ses performances sur deux tâches de la campagne internationale
d’évaluation de séparation de sources SiSEC 2008 (Signal Separation Evaluation Campaign).

Mots-clés: Audio multicanal, factorisation en matrices à coefficients positifs, factorisation en
tenseurs à coefficients positifs, algorithme espérance-maximisation, séparation aveugle de sources
en mélanges convolutifs et sous-déterminés.
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Multichannel nonnegative matrix factorization in
convolutive mixtures for audio source separation

Alexey Ozerov and Cédric Févotte

Abstract—We consider inference in a general data-driven
object-based model of multichannel audio data, assumed gener-
ated as a possibly underdetermined convolutive mixture of source
signals. We work in the Short-Time Fourier Transform (STFT)
domain, where convolution is routinely approximated as linear
instantaneous mixing in each frequency band. Each source STFT
is given a model inspired from nonnegative matrix factorization
(NMF) with the Itakura-Saito divergence, which underlies a sta-
tistical model of superimposed Gaussian components. We address
estimation of the mixing and source parameters using two meth-
ods. The first one consists of maximizing the exact joint likelihood
of the multichannel data using an expectation-maximization (EM)
algorithm. The second method consists of maximizing the sum of
individual likelihoods of all channels using a multiplicative update
algorithm inspired from NMF methodology. Our decomposition
algorithms are applied to stereo audio source separation in
various settings, covering blind and supervised separation, music
and speech sources, synthetic instantaneous and convolutive
mixtures, as well as professionally produced music recordings.
Our EM method produces competitive results with respect to
state-of-the-art as illustrated on two tasks from the international
Signal Separation Evaluation Campaign (SiSEC 2008).

Index Terms—Multichannel audio, nonnegative matrix
factorization, nonnegative tensor factorization, expectation-
maximization algorithm, underdetermined convolutive blind
source separation.

I. INTRODUCTION

NONNEGATIVE matrix factorization (NMF) is a linear
regression technique with effervescent popularity in the

fields of machine learning and signal/image processing [1].
Much research about this topic has been driven by applications
in audio, where the data matrix is taken as the magnitude or
power spectrogram of a sound signal. NMF was for example
applied with success to automatic music transcription [2],
[3] and audio source separation [4], [5]. The factorization
amounts to decomposing the spectrogram data into a sum
of rank-1 spectrograms, each of which being the expression
of an elementary spectral pattern amplitude-modulated in
time. However, while most music recordings are available in
multichannel format (typically, stereo), NMF in its standard
setting is only suited to single-channel data. Extensions to
multichannel data have been considered, either by stacking
up the spectrograms of each channel into a single matrix
[6] or by considering nonnegative tensor factorization (NTF)
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under a PARAFAC structure, where the channel spectrograms
form the slices of a 3-valence tensor [7]. These approaches
inherently assume that the original sources have been mixed
instantaneously, which in modern music mixing is not realistic,
and they require a posterior binding step so as to group the el-
ementary components into instrumental sources. Furthermore
they do not exploit the redundancy between the channels in
an optimal way, as will be shown later.

The aim of this work is to remedy these drawbacks. We
formulate a multichannel NMF model that accounts for con-
volutive mixing. The source spectrograms are modeled through
NMF and the mixing filters serve to identify the elementary
components pertaining to each source. We consider more
precisely I sampled signals x̃i(t) (i = 1, . . . , I , t = 1, . . . , T )
generated as convolutive noisy mixtures of J source signals
s̃j(t) (i = 1, . . . , J) such that

x̃i(t) =
∑J

j=1

∑L−1

τ=0
ãij(τ) s̃j(t− τ) + b̃i(t), (1)

where ãij(τ) is the finite impulse response of some (causal)
filter and b̃i(t) is some additive noise. The time-domain mixing
given by equation (1) can be approximated in the Short-Time
Fourier Transform (STFT) domain as

xi,fn =
∑J

j=1
aij,f sj,fn + bi,fn, (2)

where xi,fn, sj,fn and bi,fn are the complex-valued STFTs
of the corresponding time signals, aij,f is the complex-valued
discrete Fourier transform of filter ãij(τ), f = 1, . . . , F is
a frequency bin index, and n = 1, . . . , N is a time frame
index. Equation (2) holds when the filter length L is assumed
“significantly” shorter than the STFT window size (2F − 2)
[8]. Equation (2) can be rewritten in matrix form, such that

xfn = Af sfn + bfn, (3)

where xfn = [x1,fn, . . . , xI,fn]T , sfn = [s1,fn, . . . , sJ,fn]T ,
bfn = [b1,fn, . . . , bI,fn]T and Af = [aij,f ]ij ∈ CI×J .

A key ingredient of this work is to model the F ×N power
spectrogram |Sj |2 = [|sj,fn|2]fn of source j as a product of
two nonnegative matrices Wj et Hj , such that

|Sj |2 ≈ WjHj . (4)

Given the observed mixture STFTs X = {xi,fn}ifn, we are
interested in joint estimating the source spectrogram factors
{Wj ,Hj}j and the mixing system {Af}f , as illustrated on
Fig. 1. Our problem splits into two subtasks: (i) defining
suitable estimation criteria, and (ii) designing algorithms op-
timizing these criteria.
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We adopt a statistical setting in which each source STFT
is modeled as a sum of latent Gaussian components, a
model introduced by Benaroya et al. [9] in a supervised
single-channel audio source separation context. A connec-
tion between full maximum likelihood (ML) estimation of
the variance parameters in this model and NMF using the
Itakura-Saito (IS) divergence was pointed out in [10]. Given
this source model, hereafter referred to as NMF model, we
introduce two estimation criteria together with corresponding
inference methods:

• The first method consists of maximizing the exact
joint log-likelihood of the multichannel data using an
expectation-maximization (EM) algorithm [11]. This
method fully exploit the redundancy between the chan-
nels, in a statistically optimal way. It draws parallels
with several model-based multichannel source separation
methods [12]–[18], as described throughout the paper.

• The second method consists of maximizing the sum
of individual log-likelihoods of all channels using a
multiplicative update (MU) algorithm inspired from
NMF methodology. This approach relates to the above-
mentioned NTF techniques [6], [7]. However, in contrast
to standard NTF which inherently assumes instantaneous
mixing, our approach addresses a more general convolu-
tive structure and does not require the posterior binding
of the elementary components into J sources.

The general multichannel NMF framework we describe
yields a data-driven object-based representation of
multichannel data that may benefit many tasks in audio,
such as transcription or object-based coding. In this article we
will more specifically focus on the convolutive blind source
separation (BSS) problem, and as such we also address means
of reconstructing source signal estimates from the set of
estimated parameters. Our decompositions are conservative
in the sense that the spatial source estimates sum up to the
original mix. The mixing parameters may also be changed
without degrading audio quality, so that music remastering is
one potential application of our work. Remix of well-known
songs retrieved from commercial CD recordings are proposed
in the results section.

Many convolutive blind source separation (BSS) methods
have been designed under model (3). Typically, an instan-
taneous independent component analysis (ICA) algorithm is
applied to data {xfn}n=1,...,N in each frequency subband f ,
yielding a set of J source subband estimates per frequency bin.
This approach is usually referred to as frequency-domain ICA
(FD-ICA) [19]. The source labels remain however unknown
because of the ICA standard permutation indeterminacy, lead-
ing to the well-known FD-ICA permutation alignment prob-
lem, which cannot be solved without using additional a priori
knowledge about the sources and/or about the mixing filters.
For example in [20] the sources in different frequency bins
are grouped a posteriori relying on their temporal correlation,
thus using prior knowledge about the sources, and in [21],
[22] the sources and the filters are estimated assuming a
particular structure of convolutive filters, i.e., prior knowledge

about filters is used. The permutation ambiguity arises from
the individual processing of each subband, which implicitly
assumes mutual independence of one source’s subbands. This
is not the case in our work where our source model implies a
coupling of the frequency bands, and joint estimation of the
source parameters and mixing coefficients frees us from the
permutation alignment problem.

Our EM-based method is related to some multichannel
source separation techniques employing Gaussian mixture
models (GMMs) as source models. Univariate GMMs have
been used to model source samples in the time domain for
separation of instantaneous [12], [13] and convolutive [12]
mixtures. However, such time-domain GMMs may be consid-
ered not suitable for audio because they do not model temporal
correlations across signal samples. In [14], Attias proposes
to model the sources in the STFT domain using multivariate
GMMs, hence taking into account temporal correlations in
audio signals (assumed stationary in each window frame). He
develops a source separation method for convolutive mixtures,
supervised in the sense that the source models are pre-trained
in advance. A similar approach with log-spectral domain
GMMs is developed by Weiss et al. in [15]. Arberet et al.
[16] propose a multivariate GMM-based separation method
for instantaneous mixing, involving a computationally efficient
strategy for learning GMMs independently from intermediate
source estimates obtained by some BSS method. As compared
to these works, we use a different source model (the NMF
model), which might be considered more suitable for musical
signals than the GMM. Moreover, the computational complex-
ity of inference in our model grows linearly with the number of
components while the complexity of exact inference in GMMs
grows combinatorially. Also, our method is fully adaptative
(blind) and is applicable to the general case of convolutive
noisy mixtures and covers both the (over)determined (I ≥ J)
and under-determined (I < J) cases.

The remaining of this paper is organized as follows. NMF
source model and noise model are introduced in Section II.
Section III is devoted to the definition of our two esti-
mation criteria, with corresponding optimization algorithms.
Section IV presents the results of application of our methods
to stereo source separation in various settings, including blind
and supervised separation of music and speech sources in
synthetic instantaneous and convolutive mixtures, as well as
in the professionally produced music recordings. Conclusions
are drawn in section V. Preliminary aspects of this work
are presented in [23]. We here considerably extend on the
simulations part as well as on the theoretical developments
related to our algorithms.

II. MODELS

A. Sources

Let K ≥ J and {Kj}J
j=1 be a non-trivial partition of K =

1, . . . ,K. Following [9], [10], we assume the complex random
variable sj,fn to be a sum of #Kj latent components, such
that

sj,fn =
∑

k∈Kj

ck,fn with ck,fn ∼ Nc(0, wfkhkn) (5)
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Fig. 1. Representation of convolutive mixing system and formulation of Multichannel NMF problem.

where wfk, hkn ∈ R+ and Nc (µ,Σ) is the proper complex
Gaussian distribution [24] with probability density function
(pdf)

Nc (x; µ,Σ) = |π Σ|−1 exp
[−(x− µ)H Σ−1 (x− µ)

]
.
(6)

In the rest of the paper the quantities sj,fn and ck,fn are
respectively referred to as “source” and “component”. The
components are assumed mutually independent and individ-
ually independent across frequency f and frame n. It follows
that

sj,fn ∼ Nc

(
0,

∑
k∈Kj

wfkhkn

)
. (7)

Denoting Sj the F × N STFT matrix [sj,fn]fn of source
j and introducing the matrices Wj = [wfk]f,k∈Kj and
Hj = [hkn]k∈Kj ,n respectively of dimensions F ×#Kj and
#Kj × N , it is easily shown [10] that the log-likelihood of
the parameters describing source j writes

− log p(Sj |WjHj)
c=

∑
fn

dIS(|sj,fn|2|[WjHj ]fn)

where “ c=” denotes equality up to a constant and

dIS(x|y) =
x

y
− log

x

y
− 1 (8)

is the IS divergence. In other words, ML estimation of Wj

and Hj given source STFT Sj is equivalent to NMF of the
power spectrogram |Sj |2 into WjHj , where the IS divergence
is used. MU and EM algorithms for IS-NMF are respectively
described in [25], [26] and [10]; in essence, this paper de-
scribes a generalization of these algorithms to a multichannel

multisource scenario. In the following we will use the notation
Pj = Wj Hj , i.e., pj,fn = E{|sj,fn|2}.

Our source model is related to the GMM used for example
in [14], [16] in the same source separation context, with
the difference that one source frame is here modeled as a
sum of #Kj elementary components while in the GMM one
source frame is modeled as a process which can take one of
many states, each characterized by a covariance matrix. The
computational complexity implied by our model grows linearly
with the number of components while the complexity of exact
inference in the GMM grows combinatorially with the number
of states. EM algorithms proposed in [14] and [16] for GMM
have linear complexity as well, but at the price of approximate
inference. We wish to emphasize that we here take a fully data-
driven approach in the sense that no parameter is pre-trained.

B. Noise

In the most general case, we may assume noisy data and the
following algorithms can easily accommodate estimation of
noise statistics under Gaussian independent assumptions and
given covariance structures such as Σb,fn = Σb,f or Σb,n.
In this paper we only consider, for simplicity, stationary and
spatially uncorrelated noise such that

bi,fn ∼ Nc

(
0, σ2

i,f

)
(9)

and Σb,f = diag([σ2
i,f ]i). The musical data we consider in

Section IV-A are not noisy in the common sense, but the noise
component can account for model discrepancy and/or quanti-
zation noise. Moreover, this noise component is required in the
EM algorithm to prevent from slow convergence and potential
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numerical instabilities, as discussed later. In Section IV-D we
will consider several scenarios: when the variances are equal
and fixed to a small value σ̃2, when the variances are estimated
from data, and most importantly when annealing is performed
via the noise variance, so as to speed up convergence as well
as favor global solutions.

C. Convolutive mixing model revisited

The mixing model (3) can be recast as

xfn = ~Af cfn + bfn, (10)

where cfn = [c1,fn, . . . , cK,fn]T ∈ CK×1 and ~Af is the
“extended mixing matrix” of dimension I×K, with elements
defined by ~aik,f = aij,f if and only if k ∈ Kj . Thus, for every
frequency bin f our model is basically a linear mixing model
with I channels and K elementary Gaussian sources ck,fn,
with structured mixing coefficients (i.e., subsets of elementary
sources arrive from same directions). Subsequently, we will
note Σc,fn = diag

(
[wfkhkn]k

)
the covariance of cfn.

III. METHODS

A. Maximization of exact likelihood with EM

1) Criterion: Let θ = {A,W,H,Σb} be the set of all
parameters, where A is the I × J × F tensor with entries
aij,f , W is the F × K matrix with entries wfk, H is the
K×N matrix with entries hkn, and Σb are the noise variance
parameters. Under previous assumptions, data xfn has a zero-
mean proper Gaussian distribution with covariance

Σx,fn(θ) = AfΣs,fnAH
f + Σb,f , (11)

where Σs,fn = diag([pj,fn]j) is the covariance of sfn. ML
estimation is consequently shown to amount to minimization
of

C1(θ) =
∑

fn

trace
(
xfn xH

fn Σ−1
x,fn

)
+ log detΣx,fn. (12)

The noise variance term appears necessary so as to prevent
from ill-conditioned inverses that occur if (i) rank(Af ) < I ,
and in particular if I > J , i.e., in the overdetermined case, or
if (ii) Σs,fn has more than (J−I) null diagonal coefficients in
the underdetermined case (I < J). Case (ii) might happen in
regions of the time-frequency plane where sources are inactive.

For a fixed f , the BSS problem described by Eq. (3)
and (12), and the following EM algorithm, is reminiscent of
works by Cardoso et al., see, e.g., [27] for the square noise-free
case, [17] for other cases and [18] for use in an audio setting.
In these papers, a grid of the representation domain is chosen,
in each cell of which the source statistics are assumed constant.
This is not required in our case where we instead solve F

parallel linear instantaneous mixtures tied across frequency by
the source model 1.

2) Indeterminacies: Criterion (12) suffers from scale, phase
and permutation indeterminacies. Regarding scale and phase,
let θ̂ = {{Af}f , {Wj ,Hj}j} be a minimizer of (12) and
let {Df}f and {Λj}j be sets of respectively complex and
nonnegative diagonal matrices. Then, the set

θ̃ = {{Af D−1
f }f , {diag([|djj,f |2]f )Wj Λ−1

j }j , {Λj Hj}j}

leads to Σx,fn(θ̂) = Σx,fn(θ̃), hence same likelihood value.
Similarly, permuted diagonal matrices would also leave the cri-
terion unchanged. In practice, we remove the scale and phase
ambiguity by imposing

∑
i |aij,f |2 = 1 and a1j,f ∈ R+ (and

scaling the rows of Wj accordingly) and then by imposing∑
f wfk = 1 (and scaling the rows of Hj accordingly).
3) Algorithm: We derive an EM algorithm based on com-

plete data {X,C}, where C is the K × F ×N STFT tensor
with coefficients ck,fn. The complete data pdfs {p(X,C|θ)}θ

form an exponential family (see, e.g., [11] or Appendix of
[28]) and the set {Rxx,f ,Rxs,f ,Rss,f , {uk,fn}kn}f defined
by

Rxx,f =
1
N

∑
n

xfnxH
fn, Rxs,f =

1
N

∑
n

xfnsH
fn, (13)

Rss,f =
1
N

∑
n

sfnsH
fn, uk,fn = |ck,fn|2, (14)

is shown to be a natural (sufficient) statistics [28] for this
family. Thus, one iteration of EM consists of computing
the expectation of the natural statistics conditionally on the
current parameter estimates (E step) and of re-estimating the
parameters using the updated natural statistics, which amounts
to maximizing the conditional expectation of the complete
data likelihood Q(θ|θ′) =

∫
log p(X,C|θ)p(C|X,θ′)dC (M

step). The resulting updates are given in Algorithm 1, with
more details given in Appendix A.

4) Implementation issues: The computation of the source
Wiener gain Gs,fn given by Eq. (19) requires the inversion
of the I× I matrix Σx,fn at every time-frequency (TF) point.
When I > J (overdetermined case) it may be preferable
for sake of computational efficiency to use the following
alternative formulation of Gs,fn, obtained using Woodbury
matrix identity [29]

Gs,fn = Ξ−1
s,fnAH

f Σ−1
b,f , (27)

with
Ξs,fn = AH

f Σ−1
b,fAf + Σ−1

s,fn. (28)

This second formulation requires the inversion of the J × J
matrix Ξs,fn instead of the inversion of the I×I matrix Σx,fn.
The same idea applies to the computation of Gc,fn, Eq. (20), if

1In [17], [27] the ML criterion can be recast as a measure of fit between
observed and parameterized covariances, where the measure of deviation
writes D(Σ1|Σ2) = trace

(
Σ1 Σ−1

2

)
− log detΣ1 Σ−1

2 − I and Σ1

and Σ2 are positive definite matrices of size I × I (note that the IS
divergence is obtained in the special case I = 1). This is in fact the
Kullback-Leibler divergence between pdfs of two zero-mean Gaussians with
covariances Σ1 and Σ2. Such a formulation cannot be used in our case
because Σ1 = xfn xH

fn is not invertible for I > 1.
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Algorithm 1 EM algorithm (one iteration)
• E step. Conditional expectations of natural statistics:

R̂xx,f = Rxx,f =
1
N

∑
n

xfnxH
fn, (15)

R̂xs,f =
1
N

∑
n

xfnŝH
fn, (16)

R̂ss,f =
1
N

∑
n

ŝfnŝH
fn + Σs,fn −Gs,fnAfΣs,fn

(17)

ûk,fn =
[
ĉfnĉH

fn + Σc,fn −Gc,fn
~AfΣc,fn

]
k,k

(18)

where

ŝfn = Gs,fnxfn, Gs,fn = Σs,fnAH
f Σ−1

x,fn, (19)

ĉfn = Gc,fnxfn, Gc,fn = Σc,fn
~AH

f Σ−1
x,fn, (20)

Σx,fn = AfΣs,fnAH
f + Σb,f (21)

Σs,fn = diag

([∑
k∈Kj

wfkhkn

]

j

)
(22)

Σc,fn = diag
(
[wfkhkn]k

)
(23)

and ~Af is defined in Sec. II-C.
• M step. Update the parameters:

Af = R̂xs,fR̂−1
ss,f , (24)

Σb,f = diag
(
R̂xx,f −AfR̂H

xs,f − R̂xs,fAH
f

+AfR̂ss,fAH
f

)
, (25)

wfk =
1
N

∑
n

ûk,fn

hkn
, hkn =

1
F

∑

f

ûk,fn

wfk
. (26)

• Normalize A, W and H according to Section III-A2.

I > K. Thus, this second formulation may become interesting
in practice only if I > J and I > K, i.e., if I > K (recall
that K ≥ J). As we only consider undetermined mixtures in
the experimental part of this article (I < J), we turn to the
original formulation given by Eq. (19). As we more precisely
consider stereo mixtures we only need inverting 2×2 matrices
per TF point and our MATLAB code was efficiently vectorized
so as to manipulate time-frequency matrices directly, thanks
to Cramer’s explicit matrix inversion formula. Note also that
we only need to compute the diagonal elements of the K×K
matrix in Eq. (18). Hence the computational complexity of one
EM algorithm iteration grows linearly (and not quadratically)
with the number of components.

5) Linear instantaneous case: Linear instantaneous mixing
is a special case of interest, that concerns for example “pan
pot” mixing. Here, the mixing matrix is real-valued and shared
between all the frequency subbands, i.e., Af = Ainst ∈ RI×J .
In that case, Eq. (24) must be replaced by:

Ainst = <
{∑

f
R̂xs,f

} [
<

{∑
f
R̂ss,f

}]−1

. (29)

6) Simulated annealing: If one computes Af through equa-
tions (24), (16), (17), (19) and (21), assuming Σb,f = 0,
one has Af = Af as result. Thus, by continuity, when the
covariance matrix Σb,f tends to zero, the resulting update
rule for Af tends to Af ← Af . Hence, the convergence of
Af becomes very slow for small values of σ2

i,f . To overcome
this difficulty and also favor global convergence, we have
tested in the experimental section several simulated annealing
strategies. In our framework, simulated annealing consists
in setting the noise variances σ2

i,f to a common iteration-
dependent value σ2

i,f (iter), initialized with an arbitrary large
value σ̂2

i,f and gradually decreased through iterations to a
small value σ̃2

i,f . Besides improving convergence speed, this
scheme should also favor convergence to global solutions, as
typical of annealing algorithms: the cost function is rendered
flatter in the first iterations due to the (assumed) presence
of high noise, smoothing out local minima, and is gradually
brought back to its exact shape in the subsequent iterations.

7) Reconstruction of the sources: Wiener reconstructions of
the source STFTs are directly retrieved from Eq. (19). Time-
domain sources may then be obtained through inverse STFT
using an adequate overlap-add procedure with dual synthesis
window. By conservativity of Wiener reconstruction the spatial
images of the estimated sources and of the estimated noise
sum up to the original mix in STFT domain, i.e., Âf , ŝfn

and b̂fn = Σb,fΣ−1
x,fnxfn satisfy Eq. (3). Thanks to linearity

of the inverse-STFT, the reconstruction is conservative in the
time domain as well.

B. Maximization of individual likelihoods with MU rules

1) Criterion: We now consider a different approach con-
sisting of maximizing the sum of individual channel log-
likelihoods

∑
i log p(Xi|θ), hence discarding mutual informa-

tion between the channels. This is equivalent to setting the off-
diagonal terms of xfn xH

fn and Σx,fn to zero in criterion (12),
leading to minimization of cost

C2(θ) =
∑

ifn
dIS(|xi,fn|2|v̂i,fn), (30)

where v̂i,fn is the structure defined by

v̂i,fn =
∑

j
qij,f

∑
k∈Kj

wfk hkn

︸ ︷︷ ︸
pj,fn

(+σ2
i,f ), (31)

with qij,f = |aij,f |2. For a fixed channel i, v̂i,fn is basically
the sum of the source variances modulated by the mixing
weights. A noise variance term σ2

i,f might be considered,
either fixed or to be estimated, but we will simply set it
to zero as we will not here encounter the issues described
in Section III-A6 about convergence of EM in noise-free
observations.

Our approach differs from the NTF approach of [6], [7]
where the following PARAFAC structure [30] is considered

v̂NTF
i,fn =

∑
k
qNTF
ik wfk hkn. (32)

It is only a sum of I ×F ×N rank-1 tensors and amounts to
assuming that V̂NTF

i = [v̂NTF
i,fn ]fn is a linear combination of

F × N time-frequency patterns wkhk, where wk is column



6

k of W and hk is row k of H. It intrinsically implies a
linear instantaneous mixture and requires a post-processing
binding step in order to group the K elementary patterns into
J sources, based on clustering of the ratios {qNTF

1k /qNTF
2k }k

(in the stereo case). To ease comparison, our model can be
rewritten as

v̂i,fn =
∑

k
~qik,f wfk hkn (33)

subject to the constraint ~qik,f = qij,f iif k ∈ Kj (with the
notation introduced in Section II-C, we have also ~qik,f =
|~aik,f |2). Hence, our model has the following merits w.r.t. the
PARAFAC-NTF model: (i) it accounts for convolutive mixing
by considering frequency-dependent mixing proportions (~qik,f

instead of qNTF
ik ) and (ii) the constraint that the K mixing

proportions {~qik,f}k can only take J possible values implies
that the clustering of the components is taken care of within
the decomposition as opposed to after the decomposition.

We have here chosen to use the IS divergence as a measure
of fit in Eq. (30) because it connects with the optimal inference
setting of Section III-A and because it was shown a relevant
cost for factorization of audio spectrogram [10], but other costs
could be considered, such as the standard Euclidean distance
and the generalized Kullback-Leibler (KL) divergence, which
are the costs considered in [6], [7].

2) Indeterminacies: Criterion (30) suffers from same scale,
phase and permutations ambiguities as criterion (12), with the
exception that ambiguity on the phase of aij,f is now total as
this parameter only appears through its squared-modulus. In
the following, the scales are fixed as in Section III-A2.

3) Algorithm: We describe for the minimization of C2(θ)
an iterative MU algorithm inspired from NMF methodology
[1], [31], [32]. Continual descent of the criterion under this
algorithm was observed in practice. The algorithm simply
consists of updating each scalar parameter θl by multiplying
its value at previous iteration by the ratio of the negative
and positive parts of the derivative of the criterion w.r.t. this
parameter, namely

θl ← θl
[∇θl

C2(θ)]−
[∇θl

C2(θ)]+
, (34)

where ∇θl
C2(θ) = [∇θl

C2(θ)]+ − [∇θl
C2(θ)]− and the

summands are both nonnegative [10]. Not any cost function
gradient may be separated in two such summands, but this
is the case for the Euclidean, KL and IS costs, and more
generally the β-divergence of which they are specific cases
[10], [26]. This scheme automatically ensures the nonnega-
tivity of the parameter updates, provided initialization with a
nonnegative value.

The resulting parameter updates are described in Algo-
rithm 2, where “.” indicates element-wise matrix operations,
1N×1 is a N -vector of ones, qij is the F × 1 vector [qij,f ]f
and Vi (resp. V̂i) is the F × N matrix [|xi,fn|2]fn (resp.
[v̂i,fn]fn). Some details about the derivation of the algorithm
are given in Appendix B.

4) Linear instantaneous case: In the linear instantaneous
case, when qij,f = qij , we obtain the following update rule

Algorithm 2 MU rules (one iteration)
• Update Q

qij ← qij .

[
V̂.−2

i .Vi.(WjHj)
]
1N×1[

V̂.−1
i .(WjHj)

]
1N×1

(35)

• Update W

Wj ← Wj .

∑I
i=1 diag(qij)(V̂.−2

i .Vi)HT
j∑I

i=1 diag(qij)V̂.−1
i HT

j

(36)

• Update H

Hj ← Hj .

∑I
i=1(diag(qij)Wj)T (V̂.−2

i .Vi)∑I
i=1(diag(qij)Wj)T V̂.−1

i

(37)

• Normalize Q, W and H according to Section III-B2.

for the mixing matrix coefficients

qij ← qij .
sum

[
V̂.−2

i .Vi.(WjHj)
]

sum
[
V̂.−1

i .(WjHj)
] (38)

where sum[M] is the sum of all coefficients in M. Then,
diag(qij) needs only be replaced by qij in Eq. (36) and (37).
The overall algorithm yields a specific case of PARAFAC-
NTF which directly assigns the elementary components to J
directions of arrival (DOA). This scheme however requires to
fix in advance the partition {Kj}J

j=1 of K = 1, . . . , K, i.e.,
assign a given number of components per DOA.

5) Reconstruction of the source images: While the joint-
likelihood EM optimization setting provides a mean of re-
constructing the source STFTs sfn in a principled way using
Wiener filtering, it is not obvious how this should be done in
the present setting where only the sum of individual likeli-
hoods is maximized. The most natural way is to reconstruct
an image sim

ij,fn of source j in channel i through

ŝim
ij,fn =

qij,fpi,fn

v̂i,fn
xi,fn, (39)

i.e., by Wiener filtering of each channel. A noise compo-
nent (if any) can similarly be reconstructed as b̂i,fn =
(σ2

i,f/v̂i,fn)xi,fn. Overall the decomposition is conservative,
i.e.,

∑
j ŝim

ij,fn + b̂i,fn = xi,fn. We have also tried other
reconstruction schemes consisting of forming an estimate of
Af from its squared absolute values Qf (e.g., aij,f = √

qij,f )
and then applying Wiener estimation (19), but they proved less
satisfying.

IV. EXPERIMENTS

In this section we first describe the test data and evaluation
criteria, and then we proceed with experiments. All the audio
datasets and separation results are available from our demo
webpage [33].
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A. Datasets

Four audio datasets have been considered and are described
below.
• Dataset A consists of two synthetic stereo mixtures, one

instantaneous the other convolutive, of J = 3 musical
sources (drums, lead vocals and piano) created using 17
seconds-excerpts of original separated tracks from the
song “Sunrise” by S. Hurley, available under a Creative
Commons License at [34] and downsampled to 16 kHz.
The mixing parameters (instantaneous mixing matrix and
the convolutive filters) were taken from the 2008 Sig-
nal Separation Evaluation Campaign (SiSEC’08) “under-
determined speech and music mixtures” task development
datasets [35], and are described below.

• Dataset B consists of synthetic (instantaneous and con-
volutive) and live-recorded (convolutive) stereo mixtures
of speech and music sources, corresponding to the test
data for the 2007 Stereo Audio Source Separation Eval-
uation Campaign (SASSEC’07) [36]. It also coincides
with development dataset dev2 of SiSEC’08 “under-
determined speech and music mixtures” task. All the
mixtures are 10 seconds-long and sampled at 16 kHz. The
instantaneous mixing is characterized by static positive
gains. The synthetic convolutive filters were generated
with the Roomsim toolbox [37]. They simulate a pair of
omnidirectional microphones placed 1 m apart in a room
of dimensions 4.45 x 3.55 x 2.5 m with reverberation
time 130 ms, which correspond to the setting employed
for the live-recorded mixtures. The distances between
the sources and the center of the microphone pair vary
between 80 cm and 1.20 m. For all mixtures the source
directions of arrival vary between -60 and +60 degrees
with a minimal spacing of 15 degrees (for more details
see [35]).

• Dataset C consists of SiSEC’08 test and development
datasets for task “professionally produced music record-
ings”. The test dataset consists of two excerpts (of
about 22 seconds-long) from two different professionally
produced stereo songs, namely “Que pena tanto faz” by
Tamy and “Roads” by Bearlin. The development dataset
consists of two other excerpts (of about 12 seconds-
long) from the same songs, with all original stereo tracks
provided separately. All recordings are sampled at 44 kHz
(CD quality).

• Dataset D consists of three excerpts of length between 25
and 50 seconds taken from three professionally produced
stereo recordings of well-known pop and reggae songs,
and downsampled to 22 kHz.

B. Source separation evaluation criteria

In order to evaluate our multichannel NMF algorithms in
terms of audio source separation we use the Signal to Distor-
tion Ratio (SDR) of reconstructed source images described
in [36], which is a global measure unifying the Image to
Spatial distortion Ratio (ISR), the Source to Interference Ratio
(SIR) and the Sources to Artifacts Ratio (SAR) [36]. To
assess the quality of the mixing system estimates we used

the Mixing Error Ratio (MER) described at [35], which is an
SNR-like criterion expressed in decibels. MATLAB routines
for computing these criteria were obtained from the SiSEC’08
webpage [35].

These evaluation criteria can only be computed when
the original source spatial images (and mixing systems) are
available. When not (i.e., for datasets C & D), separation
performance can only be assessed perceptually by listening
to the separated source images, available online at [33].

C. STFT parameters

In all the experiments below we used STFTs with half-
overlapping sine windows, using the STFT computation tools
for MATLAB available from [35]. The choice of the STFT
window size is rather important, and is a matter a compromise
between (i) good frequency resolution and validity of the
convolutive mixing approximation (2) and (ii) validity of
the assumption of source local stationnarity. We have tried
various window sizes (from powers of 2 in samples) for every
experiment, with size yielding best separation results given in
Table I.

experiment window length sampling
section dataset samples milliseconds freq. (Hz)
IV-D, IV-E A 1024 64 16000

B - inst. 1024 64 16000
IV-F B - conv. 2048 128 16000
IV-G C 2048 46 44100
IV-H D 2048 93 22050

TABLE I
STFT WINDOW LENGTHS USED IN DIFFERENT EXPERIMENTS.

D. Dealing with the noise part in the EM algorithm

In this section we experiment strategies for updating the
noise parameters in the EM algorithm. We here arbitrarily use
the convolutive mixture of dataset A and set the total number
of components to K = 12, equally distributed between J = 3
sources. Our EM algorithm is very sensitive to parameters ini-
tialization, and to be sure that we have a “good initialization”,
we provide it with perturbed oracle initializations: factors W
and H as computed from the original sources using IS-NMF
[10] and original mixing system A, all perturbed with high
level additive noise. We have tested the following noise update
schemes:
• (A): Σb,f = σ̃2 II , with fixed σ̃2 set to 16-bit PCM

quantization noise variance.
• (B): Σb,f = σ̂2

fII , with fixed σ̂2
f set to the average chan-

nel empirical variance in every frequency band divided
by 100, i.e., 100 σ̂2

f =
∑

in |xi,fn|2/IN .
• (C): Σb,f = σ2

fII with standard deviation σf decreasing
linearly through iterations from σ̂f to σ̃. This is what we
refer to as simulated annealing.

• (D): Same strategy as (C), but with adding a random
noise with covariance Σb,f to X at every EM iteration.
We refer to this as annealing with noise injection.
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• (E): Σb,f = diag([σ2
i,f ]i) is reestimated with update

Eq. (25).
• (F): Noise covariance is reestimated like in scheme E,

but under the more constrained structure Σb,f = σ2
f II

(isotropic noise in each subband). In that case, op-
erator diag(·) in Eq. (25) needs to be replaced with
trace(·)II/I .

The algorithm was run for 1000 iterations in each case
and the results are presented in Figure 2, which displays
the average SDR and MER along iterations, as well as the
noise standard deviations σi,f , averaged over all channels
i and frequencies f . As explained in Section III-A6, we
observe that with a small fixed noise variance (scheme A), the
mixing parameters stagnates. With a fixed larger noise variance
(scheme B) convergence starts well but then performance
drops due to artificially high noise variance. Simulated anneal-
ing (scheme C) overcomes this problem, and artificial noise
injection (scheme D) even improves the results (both in terms
of source separation and mixing system estimation). Noise
variance reestimation allows to obtain performances almost
similar to annealing, but only in the case when the variance
is constrained to be the same in both channels (scheme F).
However, we observed that faster convergence is obtained in
general using annealing with noise injection (scheme D) for
similar results, and we will thus use this scheme in the rest of
experiments.
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Fig. 2. EM algorithm results on convolutive mixture of dataset A, using
various noise variance update schemes. (Left) Average source separation SDR,
(Middle) Average mixing system identification MER, (Right) Average noise
standard deviation. (A) triangles: small fixed noise variance, (B) circles:
larger fixed noise variance, (C) dashed line: annealing, (D) solid line:
annealing with noise injection, (E) dotted line: diagonal noise covariance
reestimation, (F) dash-dotted line: isotropic noise variance reestimation.

E. Convergence and separation performance

In this experiment we wish to check consistency of op-
timization of the proposed criteria with respect to source
separation performance improvement, in the least as measured
by the numerical criteria defined in [36]. We used both
mixtures of dataset A (instantaneous and convolutive) and
ran 1000 iterations of both algorithms (EM and MU) from
10 different perturbed oracle initializations, obtained as in

previous section. Again we used K = 12 components, equally
split into J = 3 sources. Figures 3 and 4 reports results for
the instantaneous and convolutive mixtures, respectively. Plots
on top row display in log-scale the cost functions C1(θ) and
C2(θ) w.r.t. iterations for all 10 runs. Note that cost C1(θ) is
not positive in general, see Eq. (12), so that we have added
a common large constant value to all curves so as to ensure
positivity, and to be able plotting cost value in the logarithmic
scale. Plots on bottom row display the average SDRs.

The results show that maximization of the joint likelihood
with the EM algorithm leads to consistent improvement of
source separation performance in term of SDR, in the sense
that final average SDR values are higher than values at
initialization. This is not the case with MU, which results
in nearly every case in worsening the SDR values obtained
from oracle initialization. This is undoubtedly a consequence
of discarding mutual information between the channels.

As for computational loads, our MATLAB implementation
of EM (resp. MU) algorithm takes about 80 min (resp. 20
min) per 1000 iterations, for this particular experiment with
17 seconds stereo mixture (sampled at 16 kHz), J = 3 sources,
and K = 12 components.
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Fig. 3. 10 runs of EM and MU from 10 perturbed oracle initializations using
instantaneous mixture of dataset A. (Top) Cost functions, (Bottom) Average
SDRs.

F. Blind separation of under-determined speech and music
mixtures

In this section we compare our algorithms with the methods
that achieved competitive results at the SASSEC’07 evalu-
ation campaign for the tasks of underdetermined mixtures
of respectively speech and music signals, in both instanta-
neous and convolutive mixtures. We used exact same data
and evaluation criteria. More precisely, our algorithms are
compared in the instantaneous case to the method of Vincent
[38], based on source STFT reconstruction using a minimum
l0 norm constraint given a mixing matrix estimate obtained
with the method of Arberet et al. [39]. In the convolutive
case, our algorithms are compared to the method of Sawada,



9

10
0

10
1

10
2

10
3

10
6

Cost for EM

EM iteration number

C
os

t  
C

1(θ
)

10
0

10
1

10
2

10
3

10
6.16

10
6.19

10
6.22

10
6.25

Cost for MU

MU iteration number

C
os

t  
C

2(θ
)

10
0

10
1

10
2

10
3

2

3

4

5

6

7

8

9
Source separation with EM

EM iteration number

A
ve

ra
ge

 S
D

R

10
0

10
1

10
2

10
3

2.5

3

3.5

4

4.5

5

5.5
Source separation with MU

MU iteration number

A
ve

ra
ge

 S
D

R

Fig. 4. 10 runs of EM and MU from 10 perturbed oracle initializations using
convolutive mixture of dataset A. (Top) Cost functions, (Bottom) Average
SDRs.

based on frequency-dependent complex-valued mixing ma-
trices estimation [40], and a posteriori grouping relying on
temporal correlations between sources in different frequency
bins [20]. We used the outputs of these methods to initialize
our own algorithms. In the linear instantaneous case, we were
given MATLAB implementations of [38] and [39]. In the
convolutive case, we simply downloaded the source image
estimates from the SASSEC’07 webpage [41]. In both cases
we built initialization of W and H based on NMF of the
source spectrogram estimates.2

We have found satisfactory separation results through tri-
als using #Kj = 4 components for musical sources and
#Kj = 10 components for speech sources. More components
are needed for speech so as to account for its higher variability
(e.g., vibrato). The EM and MU algorithms were run for 500
iterations, final source separation SDR results together with
reference methods results are displayed in Table II.3 The EM
method yields a significant separation improvement for all
linear instantaneous mixtures. Improvement is also obtained
in the convolutive case for most source estimates, but is
less significant in terms of SDRs. However, and maybe most
importantly, we believe our source estimates to be generally
more pleasant to listen to. Indeed, one drawback of sparsity-
based, nonlinear source reconstruction is musical noise, origi-
nating from unnatural, isolated time-frequency atoms scattered
over the time-frequency plane. In contrast, our Wiener source
estimates, obtained as a linear combination of data in each TF

2However in that case we used KL-NMF instead of IS-NMF, not to fit the
lower-energy residual artifacts and interferences, to which IS-NMF might be
overly sensitive as a consequence of its scale-invariance. This seemed to lead
to better initializations indeed.

3The reference algorithms performances in Table II do not always coincide
with those given on the SASSEC’07 webpage [41]. In the instantaneous case
this is because we have not used the exact same implementation of the l0
minimization algorithm [38] that was used for SASSEC. In the convolutive
case this is because we have removed the DC component from all speech
signals (including reference, source image estimates, and mixtures) using
high-pass filtering, in order to avoid numerical instabilities.

cell, appear to be less prone to such artifacts as can be listened
to at demo webpage [33]. We have also participated with
our EM algorithm in “under-determined speech and music
mixtures” task of SiSEC’08 for instantaneous mixtures, and
our results can be compared to other methods at 4 and 5.

G. Supervised separation of professionally produced music
recordings

We here apply our algorithms to the separation of the
professionally produced music recordings of dataset B. This
is a supervised setting in the sense that training data is
available to learn the source spectral patterns W and filters.
The following procedure is used:

• Learn mixing parameters {atr
ij,f}if , spectral patterns Wtr

j

and activation coefficients Htr
j from available train-

ing signal images of source j (using 200 iterations of
EM/MU); discard Htr

j ,
• Clamp A and W to their trained values Atr and Wtr

and reestimate activation coefficients H from test data X
(using 200 iterations of EM/MU),

• Reconstruct source image estimates from Atr, Wtr and
H.

Except for the training of mixing coefficient, the procedure
is similar in spirit to supervised single-channel separation
schemes proposed, e.g., in [9], [42].

One important issue with professionally produced modern
music mixtures is that they do not always comply with the
mixing assumptions of Eq. (3). This might be due to non-linear
sound effects (e.g., dynamic range compression), reverberation
times longer that the analysis window length, and maybe most
importantly to when the point source assumption does not hold
anymore, i.e., when the channels of a stereo instrumental track
cannot be represented as a convolution of the same source
signal. The latter situation might happen when a sufficiently
voluminous musical instrument (e.g., piano, drums, acoustic
guitar) is recorded with several microphones placed close to
the instrument. As such, the guitar track of the “Que pena
tanto faz” song from dataset C is a non-point source image.
Such tracks may be modeled as a sum of several point-sources,
with different mixing filters.

For the “Que pena tanto faz” song, the vocal part is modeled
as an instantaneously mixed point source image with #K1 = 8
components while the guitar part is modeled as a sum of 3
convolutively mixed point-source images, each modeled with
#K2 = #K3 = #K4 = 3 components. For the “Roads” song,
the bass and vocals parts are each modeled as instantaneously
mixed point-source images with 6 components, the piano
part is modeled as a convolutive point source image with 6
components and finally, the residual background music (sum
of remaining tracks) is modeled as a sum of 3 convolutive
point-source images with 4 components. The audio results,
available at [33], again illustrate the better performance of the
EM approach. Our results can be compared to other methods

4http://sassec.gforge.inria.fr/SiSEC underdetermined/test eval.html
5http://sassec.gforge.inria.fr/SiSEC underdetermined/dev2 eval.html
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Linear instantaneous mixtures
female4 male4 nodrums wdrums

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s1 s2 s3
average

l0 min. 12.6 6.1 4.7 7.3 15.6 2.7 5.3 6.9 21.2 1.7 15.8 -0.5 3.1 28.4 9.6
EM 14.2 7.8 5.9 8.6 16.8 3.5 8.2 9.6 27.1 7.6 21.4 0.9 4.6 29.8 12.3
MU 3.9 0.9 0.1 2.2 8.6 -0.7 2.8 2.9 8.8 -6.4 3.3 10.0 2.9 19.3 4.4

Synthetic convolutive mixtures (1m)
Sawada 5.2 5.3 3.2 2.6 4.5 0.6 4.9 2.3 3.0 1.0 -1.6 4.4 -12.7 0.6 1.3
EM 7.7 6.4 4.1 3.2 6.2 0.4 5.5 2.7 4.1 1.0 -1.8 3.9 -12.4 1.3 1.9
MU 5.2 3.3 2.7 1.4 3.4 -0.9 3.0 1.7 2.8 1.0 -2.0 5.9 -10.9 1.9 1.1

Live-recorded convolutive mixtures (1m)
Sawada 4.1 3.8 6.0 3.3 3.0 1.6 4.8 2.4 4.1 5.1 -3.8 4.1 4.5 6.0 3.5
EM 5.3 3.6 7.2 4.3 3.5 2.1 5.6 3.1 4.5 7.3 -4.5 4.9 5.5 8.0 4.3
MU 1.6 -0.2 4.3 1.8 1.1 0.0 2.8 2.1 3.9 3.6 -4.9 4.1 4.5 7.5 2.4

TABLE II
SOURCE SEPARATION RESULTS FOR SASSEC DATA IN TERMS OF SDR (DB).

that entered the “professionally produced music recordings”
task of SiSEC’08 at 6.

H. Blind separation of professionally produced music record-
ings

In the last experiment we have tested the EM and MU
algorithms for the separation of professionally produced music
recordings (commercial CD excerpts) in a fully unsupervised
(blind) setting. We used the following parameter initialization
procedure, inspired from [43], which yielded satisfactory re-
sults:
• Stack left and right mixture STFTs so as to create a 2F×

N complex-valued matrix X2ch = [XT
L XT

R]T .
• Produce a K-components IS-NMF decomposition of
|X2ch|2 ≈ W2chH2ch.

• Initialize W as the average of WL and WR, where
W2ch = [WT

L WT
R]T . Initialize H = H2ch.

• Reconstruct K components Ĉ2ch,k = [ĈT
L,k ĈT

R,k]T from
X2ch, W2ch and H2ch, using Wiener filtering. Produce
K ad-hoc left and right component-dependent mixing
filters estimates by averaging ĈL,k/Φ and ĈR,k/Φ over
frames, with Φ = arg(ĈL,k), and normalizing according
to Section III-A2. Cluster the resulting filter estimates
with the K-means algorithm, whose output can be used
to define the partition {Kj}J

j=1 (using cluster indices) and
a mixing system estimate A (using cluster centroids).

Depending on the recording we set the number of sources
J to 3 or 4 and used a total of K = 15 to 20 components. The
EM and MU algorithms were run for 300 iterations in every
case. Interestingly, on these specific examples the superiority
of the EM method w.r.t. the MU method is not as clear as with
previous datasets. One reason could be the existence of non-
point sources breaking the validity of mixing assumptions (3).
In such precise cases choosing not to exploit inter-channel
dependencies might be better, because our model of these
dependencies is now wrong. Looking for suitable probabilistic

6http://sassec.gforge.inria.fr/SiSEC professional/

models of non-point sources is a new and interesting research
direction.

In some cases the source image estimates contain several
musical instruments and some musical instruments are spread
over several source images. Besides poor initialization, this
can be explained by (i) sources mixed in the same directions,
and thus impossible to separate in our fully blind setting, (ii)
non-point sources, not well represented by our model and thus
split into different source image estimates.

One way to possibly refine separation results is to recon-
struct individual stereo component images (i.e., obtained via
Wiener filtering (20) in case of EM method, or via Eq. (39)
by replacing pi,fn with wfkhkn in case of MU method),
and manually group them through listening, either to separate
sources originating from same (or close) directions, or to
reconstruct multidirectional sound sources that better match
our understanding/perception of a single source.

Finally, to show the potential of our source separation
approach for music remixing, we have created some remixes
using the blindly separated source images and/or the manually
regrouped ones. The remixes were created in Audacity [44] by
simply re-panning the source image estimates between left and
right channels and by changing their gains. The audio results
can be listened to at [33].

V. CONCLUSION

We have presented a general probabilistic framework for
the representation of multichannel audio, under possibly un-
derdetermined and noisy convolutive mixing assumptions. We
have introduced two inference methods: an EM algorithm
for the maximization of the channels joint likelihood and a
MU algorithm for the maximization of the sum of individual
channel likelihoods. The complexity of these algorithms grows
linearly with the number of model components, and make them
thus suitable to real-world audio mixtures with any number of
sources. The corresponding CPU computational loads are in
the order of a few hours for a song, which may be considered
reasonable for applications such as remixing, where real-time
is not an issue.
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We have applied our decomposition algorithms to stereo
source separation in various settings, covering blind and su-
pervised separation, music and speech sources, synthetic in-
stantaneous and convolutive mixtures, as well as professionally
produced music recordings. As expected, the EM method gives
better results in terms of separation performance than the MU
method in most cases, confirming the importance of keeping
between-channel dependencies in the optimization criterion.

The EM algorithm was also shown to outperform state-of-
the-art methods, given appropriate initializations. Our methods
have indeed been found sensitive to parameter initialization,
but we have come up with two satisfying initialization
schemes. The first one, described in Section IV-F, consists
in using the output of a different separation algorithm.
We show that our EM algorithm improves the separation
results in almost all cases. The second scheme, described in
Section IV-H, consists in a single-channel NMF decomposition
followed by K-means filters clustering. Our experiments tend
to show that the NMF model is more suitable to music
rather than speech: music sources need only be represented
by a small number of components to attain good separation
performance, and informal listening indicates better separation
of music signals.

Let us now mention some further research directions. Algo-
rithms faster than EM (both in terms of convergence rate and
CPU time per iteration) would be desirable for optimization
of the joint likelihood (12). As such, we envisage turning to
Newton gradient optimization, as inspired from [45]. Mixed
strategies could also be considered, consisting of employing
EM in the first few iterations to get a sharp decrease of the
likelihood before switching to faster gradient search once in
the neighborhood of a solution.

Bayesian extensions of our algorithm are readily available,
using for example priors favoring sparse activation coefficients
hk, or even sparse filters qij,f like in [46]. Minor changes are
required in the MU rules so as to yield convergent algorithms
for MAP estimation. More complex priors structure can also
be envisaged within the EM method, such as Gamma Markov
chains favoring smoothness [10].

We have found the number of components #Kj per source
j difficult to choose. Underestimating it may lead to poor
results, while overestimating it increases the degrees of free-
dom in the model, favoring the existence of local minima
in the criteria and thus rendering initialization difficult. The
number of sources J may be itself be difficult to choose,
for example when dealing with non point-source as discussed
in Section IV-G. Exploring ideas from automatic relevance
determination (see [47] in a NMF setting), an interesting line
of research will consist of fixing a total number of components
K (a budget) and design algorithms that let data self-assign a
relevant number of components to a self-determined number
of clusters (DOAs).

While we have assessed the validity of our model in terms
of source separation, our decompositions more generally pro-
vide a data-driven object-based representation of multichannel
audio that could be relevant to other problems such as audio
transcription, indexing and object-based coding. As such, it

would be interesting to investigate the semantics revealed by
the learnt spectral patterns W and activation coefficients H.

Finally, as discussed in Section IV-H, new models should
be considered for professionally produced music recordings,
dealing with non-point sources, non-linear sound effects, such
as dynamic range compression, and long reverberation times.

APPENDIX A
EM ALGORITHM DERIVATION OUTLINE

The complete data log-likelihood can be written as:

− log p(X,C|θ) = − log p(X|C, θ)− log p(C|θ)
c=

∑

fn

[
log |Σb,f |+ (xfn −Afsfn)HΣ−1

b,f (xfn −Afsfn)
]

+
∑

k

∑

fn

[
log(hk,nwk,f ) +

|ck,fn|2
hk,nwk,f

]

=
∑

fn

[
log |Σb,f |+

∑

k

log(hk,nwk,f ) +
∑

k

|ck,fn|2
hk,nwk,f

]

+ N
∑

f

trace
[
Σ−1

b,fRxx,f −Σ−1
b,fAfRH

xs,f

−Σ−1
b,fRxs,fAH

f + Σ−1
b,fAfRss,fAH

f

]
, (40)

with Rxx,f , Rxs,f , Rss,f and uk,fn defined by Eqs. (15),
(16), (17) and (18). Thus, we have shown that the complete
data log-likelihood can be represented in the following form:

log p(X,C|θ) = 〈η(θ),T(X,C)〉+ ν(θ), (41)

where T(X,C) is a vector of all scalar elements of t(X,C) ,
{Rxx,f ,Rxs,f ,Rss,f , {uk,fn}kn}f , and η(θ) and ν(θ) are
some vector and scalar functions of parameters. That means
that the complete data pdfs {p(X,C|θ)}θ form an exponen-
tial family (see e.g., [11], [28]) and complete data statistics
t(X,C) is a natural (sufficient) statistics [11], [28] for this
family. To derive an EM algorithm in this special case one
needs to (i) solve complete data ML criterion (thanks to
(41) this solution can be always expressed as a function
of natural statistics t(X,C)), and (ii) replace in this so-
lution t(X,C) by its conditional expectation t̂(X, θ′) ,∫

t(X,C)p(C|X,θ′)dC using model θ′ estimated at the
previous step of EM.

To solve the complete data ML criterion, we first compute
the derivatives of log p(X,C|θ) (Eq. (40)) w.r.t. model pa-
rameters θ (see [48] for issues regarding derivativion w.r.t.
complex-valued parameters), set them to zero and solve the
corresponding equations (subject to the constraint that Σb,f

is diagonal), and we have 7:

Af = Rxs,fR−1
ss,f , (42)

Σb,f = diag
(
Rxx,f −AfRH

xs,f −Rxs,fAH
f

+AfRss,fAH
f

)
, (43)

wfk =
1
N

∑
n

uk,fn

hkn
, hkn =

1
F

∑

f

uk,fn

wfk
. (44)

7Bayesian MAP estimation can be carried out instead of ML by simply
adding a prior term − log p(θ) to the right part of (40) and solving the
corresponding complete data MAP criterion.
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Our EM algorithm is strictly speaking only a Generalized
EM algorithm [49] because it only ensures Q(θm+1|θm) ≥
Q(θm|θm). Indeed, in Eq. (44) W is still a function of H,
and reversely, H is a function of W.

To finish derivation of our EM algorithm we need to com-
pute conditional expectation of the natural statistics t(X,C).
It can be shown that given xfn the source vector sfn is a
proper Gaussian random vector, i.e.:

p(sfn|xfn; θ) = Nc(sfn; ŝfn,Σpost
s,fn), (45)

with mean vector ŝfn and covariance matrix Σpost
s,fn:

ŝfn = Σs,fAH
f

(
AfΣs,fAH

f + Σb,f

)−1
xfn,

Σpost
s,fn = Σs,f −Σs,fAH

f

(
AfΣs,fAH

f + Σb,f

)−1
AfΣs,f .

Computing conditional expectations of Rxs,f and Rss,f using
(45) leads to equations (16) and (17) of EM Algorithm 1. Very
similar derivations can be done to compute the conditional
expectations of uk,fn. To that matter, one only needs to
compute the posterior distribution of cfn instead of sfn, using
mixing equation (10) instead of mixing equation (3).

APPENDIX B
MU ALGORITHM DERIVATION OUTLINE

Let θ be a scalar parameter of the set {Q,W,H}. The
derivative of cost C2(θ) (Eq. (30)) w.r.t. θ simply writes

∇θD(V|V̂) =
∑

ifn

(∇θv̂i,fn) d′IS(vi,fn|v̂i,fn) (46)

where d′IS(x|y) is the derivative of dIS(x|y) w.r.t. y given by

d′IS(x|y) =
1
y
− x

y2
. (47)

Using Eq. (46), we obtain the following derivatives

∇qij,f
D(V|V̂) =

N∑
n=1

pj,fn d′(vi,fn|v̂i,fn)

∇wjfk
D(V|V̂) =

I∑

i=1

N∑
n=1

qij,f hj,kn d′(vi,fn|v̂i,fn)

∇hjkn
D(V|V̂) =

I∑

i=1

F∑

f=1

qij,f wj,fk d′(vi,fn|v̂i,fn)

which can be written in the following matrix forms

∇qij D(V|V̂) =
(
V̂.−1

i Pj − V̂.−2
i .Vi.Pj

)
1N×1

∇Wj D(V|V̂) =
I∑

i=1

diag(qij)(V̂i
.−2

.(V̂i −Vi))HT
j

∇Hj D(V|V̂) =
I∑

i=1

(diag(qij)Wj)T (V̂i
.−2

.(V̂i −Vi))

Hence the update rules given in Algorithm 2, following the
multiplicative update strategy described in Section III-B3.
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